DeBERTa Sequence Classification Base - Allocine (mdeberta_v3_base_sequence_classifier_allocine)

Description

DeBERTa v3 model with sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for multi-class document classification tasks.

mdeberta_v3_base_sequence_classifier_allocine is a fine-tuned DeBERTa model that is ready to be used for Sequence Classification tasks such as sentiment analysis or multi-class text classification and it achieves state-of-the-art performance.

We used TFDebertaV2ForSequenceClassification to train this model and used DeBertaForSequenceClassification annotator in Spark NLP 🚀 for prediction at scale!

Download Copy S3 URICopied!

How to use


document_assembler = DocumentAssembler()\ 
.setInputCol("text")\ 
.setOutputCol("document")

tokenizer = Tokenizer()\ 
.setInputCols(['document'])\ 
.setOutputCol('token') 

sequenceClassifier = DeBertaForSequenceClassification.pretrained("mdeberta_v3_base_sequence_classifier_allocine", "fr")\ 
.setInputCols(["document", "token"])\ 
.setOutputCol("class")\ 
.setCaseSensitive(True)\ 
.setMaxSentenceLength(512) 

pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
sequenceClassifier
])

example = spark.createDataFrame([['I really liked that movie!']]).toDF("text")
result = pipeline.fit(example).transform(example)

Model Information

Model Name: mdeberta_v3_base_sequence_classifier_allocine
Compatibility: Spark NLP 3.4.3+
License: Open Source
Edition: Official
Input Labels: [token, document]
Output Labels: [ner]
Language: fr
Size: 902.3 MB
Case sensitive: true
Max sentence length: 512

References

https://huggingface.co/datasets/allocine