RE Pipeline between Dates and Clinical Entities

Description

This pretrained pipeline is built on the top of re_date_clinical model.

Open in Colab Copy S3 URI

How to use

from sparknlp.pretrained import PretrainedPipeline

pipeline = PretrainedPipeline("re_date_clinical_pipeline", "en", "clinical/models")

pipeline.fullAnnotate("This 73 y/o patient had CT on 1/12/95, with progressive memory and cognitive decline since 8/11/94.")
import com.johnsnowlabs.nlp.pretrained.PretrainedPipeline

val pipeline = new PretrainedPipeline("re_date_clinical_pipeline", "en", "clinical/models")

pipeline.fullAnnotate("This 73 y/o patient had CT on 1/12/95, with progressive memory and cognitive decline since 8/11/94.")
import nlu
nlu.load("en.relation.date_clinical.pipeline").predict("""This 73 y/o patient had CT on 1/12/95, with progressive memory and cognitive decline since 8/11/94.""")

Results

|   | relations | entity1 | entity1_begin | entity1_end | chunk1                                   | entity2 | entity2_end | entity2_end | chunk2  | confidence |
|---|-----------|---------|---------------|-------------|------------------------------------------|---------|-------------|-------------|---------|------------|
| 0 | 1         | Test    | 24            | 25          | CT                                       | Date    | 31          | 37          | 1/12/95 | 1.0        |
| 1 | 1         | Symptom | 45            | 84          | progressive memory and cognitive decline | Date    | 92          | 98          | 8/11/94 | 1.0        |

Model Information

Model Name: re_date_clinical_pipeline
Type: pipeline
Compatibility: Healthcare NLP 3.4.1+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetector
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter
  • PerceptronModel
  • DependencyParserModel
  • RelationExtractionModel