Description
This pretrained pipeline is built on the top of ner_medmentions_coarse model.
How to use
pipeline = PretrainedPipeline("ner_medmentions_coarse_pipeline", "en", "clinical/models")
pipeline.annotate("EXAMPLE MEDICAL TEXT")
val pipeline = new PretrainedPipeline("ner_medmentions_coarse_pipeline", "en", "clinical/models")
pipeline.annotate("EXAMPLE MEDICAL TEXT")
import nlu
nlu.load("en.med_ner.medmentions_coarse.pipeline").predict("""EXAMPLE MEDICAL TEXT""")
Model Information
| Model Name: | ner_medmentions_coarse_pipeline |
| Type: | pipeline |
| Compatibility: | Healthcare NLP 3.4.1+ |
| License: | Licensed |
| Edition: | Official |
| Language: | en |
| Size: | 1.7 GB |
Included Models
- DocumentAssembler
- SentenceDetectorDLModel
- TokenizerModel
- WordEmbeddingsModel
- MedicalNerModel
- NerConverter