Pipeline to Detect Mentions of General Medical Terms

Description

This pretrained pipeline is built on the top of ner_medmentions_coarse model.

Copy S3 URI

How to use

pipeline = PretrainedPipeline("ner_medmentions_coarse_pipeline", "en", "clinical/models")

pipeline.annotate("EXAMPLE MEDICAL TEXT")
val pipeline = new PretrainedPipeline("ner_medmentions_coarse_pipeline", "en", "clinical/models")

pipeline.annotate("EXAMPLE MEDICAL TEXT")
import nlu
nlu.load("en.med_ner.medmentions_coarse.pipeline").predict("""EXAMPLE MEDICAL TEXT""")

Model Information

Model Name: ner_medmentions_coarse_pipeline
Type: pipeline
Compatibility: Healthcare NLP 3.4.1+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter