Pipeline to Detect Clinical Events

Description

This pretrained pipeline is built on the top of ner_events_clinical model.

Copy S3 URI

How to use

pipeline = PretrainedPipeline("ner_events_clinical_pipeline", "en", "clinical/models")

pipeline.annotate("The patient presented to the emergency room last evening")
val pipeline = new PretrainedPipeline("ner_events_clinical_pipeline", "en", "clinical/models")

pipeline.annotate("The patient presented to the emergency room last evening")
import nlu
nlu.load("en.med_ner.events_clinical.pipeline").predict("""The patient presented to the emergency room last evening""")

Results

+------------------+-------------+
|chunk             |ner_label    |
+------------------+-------------+
|presented         |OCCURRENCE   |
|the emergency room|CLINICAL_DEPT|
|last evening      |DATE         |
+------------------+-------------+

Model Information

Model Name: ner_events_clinical_pipeline
Type: pipeline
Compatibility: Healthcare NLP 3.4.1+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter