Description
This pretrained pipeline is built on the top of ner_deid_biobert model.
Predicted Entities
LOCATION
, CONTACT
, PROFESSION
, NAME
, DATE
, ID
, AGE
Live Demo Open in Colab Copy S3 URI
How to use
from sparknlp.pretrained import PretrainedPipeline
pipeline = PretrainedPipeline("ner_deid_biobert_pipeline", "en", "clinical/models")
pipeline.annotate("""A. Record date : 2093-01-13, David Hale, M.D., Name : Hendrickson, Ora MR. # 7194334 Date : 01/13/93 PCP : Oliveira, 25-year-old, Record date : 1-11-2000. Cocke County Baptist Hospital. 0295 Keats Street. Phone +1 (302) 786-5227. Patient's complaints first surfaced when he started working for Brothers Coal-Mine.""")
val pipeline = new PretrainedPipeline("ner_deid_biobert_pipeline", "en", "clinical/models")
pipeline.annotate("A. Record date : 2093-01-13, David Hale, M.D., Name : Hendrickson, Ora MR. # 7194334 Date : 01/13/93 PCP : Oliveira, 25-year-old, Record date : 1-11-2000. Cocke County Baptist Hospital. 0295 Keats Street. Phone +1 (302) 786-5227. Patient's complaints first surfaced when he started working for Brothers Coal-Mine.")
import nlu
nlu.load("en.deid.ner_biobert.pipeline").predict("""A. Record date : 2093-01-13, David Hale, M.D., Name : Hendrickson, Ora MR. # 7194334 Date : 01/13/93 PCP : Oliveira, 25-year-old, Record date : 1-11-2000. Cocke County Baptist Hospital. 0295 Keats Street. Phone +1 (302) 786-5227. Patient's complaints first surfaced when he started working for Brothers Coal-Mine.""")
Results
+-----------------------------+--------+
|chunks |entities|
+-----------------------------+--------+
|2093-01-13 |DATE |
|David Hale |NAME |
|Hendrickson |NAME |
|Ora |NAME |
|7194334 |ID |
|01/13/93 |DATE |
|Oliveira |LOCATION|
|1-11-2000 |DATE |
|Cocke County Baptist Hospital|LOCATION|
|Keats Street |LOCATION|
|Brothers |LOCATION|
+-----------------------------+--------+
Model Information
Model Name: | ner_deid_biobert_pipeline |
Type: | pipeline |
Compatibility: | Healthcare NLP 3.4.1+ |
License: | Licensed |
Edition: | Official |
Language: | en |
Size: | 422.0 MB |
Included Models
- DocumentAssembler
- SentenceDetectorDLModel
- TokenizerModel
- BertEmbeddings
- MedicalNerModel
- NerConverter