Pipeline to Detect Chemical Compounds and Genes

Description

This pretrained pipeline is built on the top of ner_chemprot_clinical model.

Copy S3 URI

How to use

pipeline = PretrainedPipeline("ner_chemprot_clinical_pipeline", "en", "clinical/models")


pipeline.annotate("Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium.")
val pipeline = new PretrainedPipeline("ner_chemprot_clinical_pipeline", "en", "clinical/models")


pipeline.annotate("Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium.")
import nlu
nlu.load("en.med_ner.chemprot_clinical.pipeline").predict("""Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium.""")

Results

+----+---------------------------------+---------+-------+----------+
|    | chunk                           |   begin |   end | entity   |
+====+=================================+=========+=======+==========+
|  0 | Keratinocyte growth factor      |       0 |    25 | GENE-Y   |
+----+---------------------------------+---------+-------+----------+
|  1 | acidic fibroblast growth factor |      31 |    61 | GENE-Y   |
+----+---------------------------------+---------+-------+----------+

Model Information

Model Name: ner_chemprot_clinical_pipeline
Type: pipeline
Compatibility: Healthcare NLP 3.4.1+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter