Pipeline to Detect Anatomical Structures (Single Entity - embeddings_clinical)

Description

This pretrained pipeline is built on the top of ner_anatomy_coarse model.

Copy S3 URI

How to use

pipeline = PretrainedPipeline("ner_anatomy_coarse_pipeline", "en", "clinical/models")


pipeline.annotate("content in the lung tissue")
val pipeline = new PretrainedPipeline("ner_anatomy_coarse_pipeline", "en", "clinical/models")


pipeline.annotate("content in the lung tissue")
import nlu
nlu.load("en.med_ner.anatomy_coarse.pipeline").predict("""content in the lung tissue""")

Results

|    | ner_chunk         | entity    |
|---:|------------------:|----------:|
|  0 | lung tissue       | Anatomy   |

Model Information

Model Name: ner_anatomy_coarse_pipeline
Type: pipeline
Compatibility: Healthcare NLP 3.4.1+
License: Licensed
Edition: Official
Language: en
Size: 1.7 GB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • WordEmbeddingsModel
  • MedicalNerModel
  • NerConverter