Pipeline to Detect Cancer Genetics

Description

This pretrained pipeline is built on the top of bert_token_classifier_ner_bionlp model.

Copy S3 URI

How to use

pipeline = PretrainedPipeline("bert_token_classifier_ner_bionlp_pipeline", "en", "clinical/models")

pipeline.annotate("Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay.")
val pipeline = new PretrainedPipeline("bert_token_classifier_ner_bionlp_pipeline", "en", "clinical/models")

pipeline.annotate("Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay.")
import nlu
nlu.load("en.classify.token_bert.biolp.pipeline").predict("""Both the erbA IRES and the erbA/myb virus constructs transformed erythroid cells after infection of bone marrow or blastoderm cultures. The erbA/myb IRES virus exhibited a 5-10-fold higher transformed colony forming efficiency than the erbA IRES virus in the blastoderm assay.""")

Results

+-------------------+----------------------+
|chunk              |ner_label             |
+-------------------+----------------------+
|erbA IRES          |Organism              |
|erbA/myb virus     |Organism              |
|erythroid cells    |Cell                  |
|bone marrow        |Multi-tissue_structure|
|blastoderm cultures|Cell                  |
|erbA/myb IRES virus|Organism              |
|erbA IRES virus    |Organism              |
|blastoderm         |Cell                  |
+-------------------+----------------------+

Model Information

Model Name: bert_token_classifier_ner_bionlp_pipeline
Type: pipeline
Compatibility: Healthcare NLP 3.4.1+
License: Licensed
Edition: Official
Language: en
Size: 404.8 MB

Included Models

  • DocumentAssembler
  • SentenceDetectorDLModel
  • TokenizerModel
  • MedicalBertForTokenClassifier
  • NerConverter