Stopwords Remover for Latvian language (161 entries)

Description

This is a scalable, production-ready Stopwords Remover model trained using the corpus available at stopwords-iso.

Download

How to use

documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")

tokenizer = Tokenizer() \
.setInputCols(["document"]) \
.setOutputCol("token")

stop_words = StopWordsCleaner.pretrained("stopwords_iso","lv") \
.setInputCols(["token"]) \
.setOutputCol("cleanTokens")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, stop_words]) 

example = spark.createDataFrame([["Jūs neesat labāks par mani"]], ["text"]) 

results = pipeline.fit(example).transform(example)
val documentAssembler = new DocumentAssembler() 
.setInputCol("text") 
.setOutputCol("document")

val stop_words = new Tokenizer() 
.setInputCols(Array("document"))
.setOutputCol("token")

val lemmatizer = StopWordsCleaner.pretrained("stopwords_iso","lv") 
.setInputCols(Array("token")) 
.setOutputCol("cleanTokens")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, stop_words))
val data = Seq("Jūs neesat labāks par mani").toDF("text")
val results = pipeline.fit(data).transform(data)
import nlu
nlu.load("lv.stopwords").predict("""Jūs neesat labāks par mani""")

Results

+---------------------------+
|result                     |
+---------------------------+
|[Jūs, neesat, labāks, mani]|
+---------------------------+

Model Information

Model Name: stopwords_iso
Compatibility: Spark NLP 3.4.1+
License: Open Source
Edition: Official
Input Labels: [token]
Output Labels: [cleanTokens]
Language: lv
Size: 1.8 KB