Description
Named Entity Recognition annotators allow for a generic model to be trained by using a Deep Learning architecture (Char CNNs - BiLSTM - CRF - word embeddings) inspired on a former state of the art model for NER: Chiu & Nicols, Named Entity Recognition with Bidirectional LSTM,CNN.
Deidentification NER (Spanish) is a Named Entity Recognition model that annotates text to find protected health information that may need to be de-identified. It detects 7 entities. This NER model is trained with a combination of custom datasets, Spanish 2002 conLL, MeddoProf dataset and several data augmentation mechanisms and it’s a reduced version of ner_deid_subentity
.
Predicted Entities
CONTACT
, NAME
, DATE
, ID
, LOCATION
, PROFESSION
, AGE
Live Demo Open in Colab Copy S3 URI
How to use
documentAssembler = nlp.DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentenceDetector = nlp.SentenceDetectorDLModel.pretrained("sentence_detector_dl","xx")\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = nlp.Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings = nlp.WordEmbeddingsModel.pretrained("embeddings_sciwiki_300d","es","clinical/models")\
.setInputCols(["sentence","token"])\
.setOutputCol("word_embeddings")
clinical_ner = medical.NerModel.pretrained("ner_deid_generic", "es", "clinical/models")\
.setInputCols(["sentence","token","word_embeddings"])\
.setOutputCol("ner")
nlpPipeline = nlp.Pipeline(stages=[
documentAssembler,
sentenceDetector,
tokenizer,
embeddings,
clinical_ner])
text = ['''
Antonio Pérez Juan, nacido en Cadiz, España. Aún no estaba vacunado, se infectó con Covid-19 el dia 14/03/2020 y tuvo que ir al Hospital. Fue tratado con anticuerpos monoclonales en la Clinica San Carlos.
''']
df = spark.createDataFrame([text]).toDF("text")
results = nlpPipeline.fit(df).transform(df)
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentenceDetector = SentenceDetectorDLModel.pretrained("sentence_detector_dl","xx")
.setInputCols(Array("document"))
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols(Array("sentence"))
.setOutputCol("token")
embeddings = WordEmbeddingsModel.pretrained("embeddings_sciwiki_300d","es","clinical/models")
.setInputCols(Array("sentence","token"))
.setOutputCol("word_embeddings")
clinical_ner = MedicalNerModel.pretrained("ner_deid_generic", "es", "clinical/models")
.setInputCols(Array("sentence","token","word_embeddings"))
.setOutputCol("ner")
val pipeline = new Pipeline().setStages(Array(
documentAssembler,
sentenceDetector,
tokenizer,
embeddings,
clinical_ner))
val text = """Antonio Pérez Juan, nacido en Cadiz, España. Aún no estaba vacunado, se infectó con Covid-19 el dia 14/03/2020 y tuvo que ir al Hospital. Fue tratado con anticuerpos monoclonales en la Clinica San Carlos."""
val df = Seq(text).toDS.toDF("text")
val results = pipeline.fit(df).transform(df)
import nlu
nlu.load("es.med_ner.deid.generic").predict("""
Antonio Pérez Juan, nacido en Cadiz, España. Aún no estaba vacunado, se infectó con Covid-19 el dia 14/03/2020 y tuvo que ir al Hospital. Fue tratado con anticuerpos monoclonales en la Clinica San Carlos.
""")
Results
+------------+----------+
| token| ner_label|
+------------+----------+
| Antonio| B-NAME|
| Pérez| I-NAME|
| Juan| I-NAME|
| ,| O|
| nacido| O|
| en| O|
| Cadiz|B-LOCATION|
| ,| O|
| España|B-LOCATION|
| .| O|
| Aún| O|
| no| O|
| estaba| O|
| vacunado| O|
| ,| O|
| se| O|
| infectó| O|
| con| O|
| Covid-19| O|
| el| O|
| dia| O|
| 14/03/2020| B-DATE|
| y| O|
| tuvo| O|
| que| O|
| ir| O|
| al| O|
| Hospital| O|
| Fue| O|
| tratado| O|
| con| O|
| anticuerpos| O|
|monoclonales| O|
| en| O|
| la| O|
| Clinica|B-LOCATION|
| San|I-LOCATION|
| Carlos|I-LOCATION|
| .| O|
+------------+----------+
Model Information
Model Name: | ner_deid_generic |
Compatibility: | Healthcare NLP 3.3.4+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, word_embeddings] |
Output Labels: | [ner] |
Language: | es |
Size: | 15.0 MB |
Dependencies: | embeddings_sciwiki_300d |
Data Source
- Internal JSL annotated corpus
- Spanish conLL
- MeddoProf
Benchmarking
label tp fp fn total precision recall f1
CONTACT 166.0 9.0 8.0 174.0 0.9486 0.954 0.9513
NAME 2879.0 195.0 191.0 3070.0 0.9366 0.9378 0.9372
DATE 1839.0 29.0 18.0 1857.0 0.9845 0.9903 0.9874
ID 119.0 11.0 12.0 131.0 0.9154 0.9084 0.9119
LOCATION 5149.0 711.0 607.0 5756.0 0.8787 0.8945 0.8865
PROFESSION 236.0 49.0 168.0 404.0 0.8281 0.5842 0.6851
AGE 313.0 33.0 50.0 363.0 0.9046 0.8623 0.8829
macro - - - - - - 0.891749
micro - - - - - - 0.909897