Description
This model maps clinical abbreviations and acronyms to their meanings using sbiobert_base_cased_mli
Sentence Bert Embeddings. It is the first primitive version of abbreviation resolution and will be improved further in the following releases.
Predicted Entities
Abbreviation Meanings
Open in Colab Copy S3 URICopied!
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
tokenizer = Tokenizer()\
.setInputCols(["document"])\
.setOutputCol("token")
word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["document", "token"])\
.setOutputCol("word_embeddings")
clinical_ner = MedicalNerModel.pretrained("ner_abbreviation_clinical", "en", "clinical/models") \
.setInputCols(["document", "token", "word_embeddings"]) \
.setOutputCol("ner")
ner_converter = NerConverterInternal() \
.setInputCols(["document", "token", "ner"]) \
.setOutputCol("ner_chunk")\
.setWhiteList(['ABBR'])
sentence_chunk_embeddings = BertSentenceChunkEmbeddings.pretrained("sbiobert_base_cased_mli", "en", "clinical/models")\
.setInputCols(["document", "ner_chunk"])\
.setOutputCol("sentence_embeddings")\
.setChunkWeight(0.5)\
.setCaseSensitive(True)
abbr_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_clinical_abbreviation_acronym", "en", "clinical/models") \
.setInputCols(["sentence_embeddings"]) \
.setOutputCol("abbr_meaning")\
.setDistanceFunction("EUCLIDEAN")\
resolver_pipeline = Pipeline(
stages = [
document_assembler,
tokenizer,
word_embeddings,
clinical_ner,
ner_converter,
sentence_chunk_embeddings,
abbr_resolver
])
text = "The patient admitted from the IR for aggressive irrigation of the Miami pouch. DISCHARGE DIAGNOSES: 1. A 58-year-old female with a history of stage 2 squamous cell carcinoma of the cervix status post total pelvic exenteration in 1991."
sample_text = spark.createDataFrame([[text]]).toDF('text')
abbr_result = resolver_pipeline.fit(sample_text).transform(sample_text)
Results
+-------+---------+------+------------------------+-------------------------------------------------------------------------+-----------------+---------------------------------+
|sent_id|ner_chunk|entity| abbr_meaning| all_k_results|all_k_resolutions| all_k_cosine_distances|
+-------+---------+------+------------------------+-------------------------------------------------------------------------+-----------------+---------------------------------+
| 0| IR| ABBR|interventional radiology|interventional radiology:::immediate-release:::(stage) IA:::intraarterial|IR:::IR:::IA:::IA|0.0156:::0.0945:::0.1046:::0.1111|
+-------+---------+------+------------------------+-------------------------------------------------------------------------+-----------------+---------------------------------+
Model Information
Model Name: | sbiobertresolve_clinical_abbreviation_acronym |
Compatibility: | Healthcare NLP 3.3.4+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence_embeddings] |
Output Labels: | [abbr_meaning] |
Language: | en |
Size: | 105.3 MB |
Case sensitive: | false |