Sentence Entity Resolver for Clinical Abbreviations and Acronyms (sbiobert_base_cased_mli embeddings)

Description

This model maps clinical abbreviations and acronyms to their meanings using sbiobert_base_cased_mli Sentence Bert Embeddings. It is the first primitive version of abbreviation resolution and will be improved further in the following releases.

Predicted Entities

Abbreviation Meanings

Open in Colab Copy S3 URI

How to use

document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")

tokenizer = Tokenizer()\
.setInputCols(["document"])\
.setOutputCol("token")

word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["document", "token"])\
.setOutputCol("word_embeddings")

clinical_ner = MedicalNerModel.pretrained("ner_abbreviation_clinical", "en", "clinical/models") \
.setInputCols(["document", "token", "word_embeddings"]) \
.setOutputCol("ner")

ner_converter = NerConverterInternal() \
.setInputCols(["document", "token", "ner"]) \
.setOutputCol("ner_chunk")\
.setWhiteList(['ABBR'])

sentence_chunk_embeddings = BertSentenceChunkEmbeddings.pretrained("sbiobert_base_cased_mli", "en", "clinical/models")\
.setInputCols(["document", "ner_chunk"])\
.setOutputCol("sentence_embeddings")\
.setChunkWeight(0.5)\
.setCaseSensitive(True)


abbr_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_clinical_abbreviation_acronym", "en", "clinical/models") \
.setInputCols(["sentence_embeddings"]) \
.setOutputCol("abbr_meaning")\
.setDistanceFunction("EUCLIDEAN")\


resolver_pipeline = Pipeline(
stages = [
document_assembler,
tokenizer,
word_embeddings,
clinical_ner,
ner_converter,
sentence_chunk_embeddings,
abbr_resolver
])

text = "The patient admitted from the IR for aggressive irrigation of the Miami pouch. DISCHARGE DIAGNOSES: 1. A 58-year-old female with a history of stage 2 squamous cell carcinoma of the cervix status post total pelvic exenteration in 1991."

sample_text = spark.createDataFrame([[text]]).toDF('text')

abbr_result = resolver_pipeline.fit(sample_text).transform(sample_text)

val document_assembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")

val word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
.setInputCols(Array("document", "token"))
.setOutputCol("word_embeddings")

val clinical_ner = MedicalNerModel.pretrained("ner_abbreviation_clinical", "en", "clinical/models") 
.setInputCols(Array("document", "token", "word_embeddings")) 
.setOutputCol("ner")

val ner_converter = NerConverterInternal() 
.setInputCols(Array("document", "token", "ner")) 
.setOutputCol("ner_chunk")
.setWhiteList(Array("ABBR"))

val sentence_chunk_embeddings = BertSentenceChunkEmbeddings.pretrained("sbiobert_base_cased_mli", "en", "clinical/models")
.setInputCols(Array("document", "ner_chunk"))
.setOutputCol("sentence_embeddings")
.setChunkWeight(0.5)
.setCaseSensitive(True)


val abbr_resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_clinical_abbreviation_acronym", "en", "clinical/models") 
.setInputCols(Array("sentence_embeddings")) 
.setOutputCol("abbr_meaning")
.setDistanceFunction("EUCLIDEAN")


val resolver_pipeline = new Pipeline().setStages(document_assembler, tokenizer, word_embeddings, clinical_ner, ner_converter, sentence_chunk_embeddings, abbr_resolver)

val sample_text = Seq("The patient admitted from the IR for aggressive irrigation of the Miami pouch. DISCHARGE DIAGNOSES: 1. A 58-year-old female with a history of stage 2 squamous cell carcinoma of the cervix status post total pelvic exenteration in 1991.").toDF("text")

val abbr_result = resolver_pipeline.fit(sample_text).transform(sample_text)
import nlu
nlu.load("en.resolve.clinical_abbreviation_acronym").predict("""The patient admitted from the IR for aggressive irrigation of the Miami pouch. DISCHARGE DIAGNOSES: 1. A 58-year-old female with a history of stage 2 squamous cell carcinoma of the cervix status post total pelvic exenteration in 1991.""")

Results

+-------+---------+------+------------------------+-------------------------------------------------------------------------+-----------------+---------------------------------+
|sent_id|ner_chunk|entity|            abbr_meaning|                                                            all_k_results|all_k_resolutions|           all_k_cosine_distances|
+-------+---------+------+------------------------+-------------------------------------------------------------------------+-----------------+---------------------------------+
|      0|       IR|  ABBR|interventional radiology|interventional radiology:::immediate-release:::(stage) IA:::intraarterial|IR:::IR:::IA:::IA|0.0156:::0.0945:::0.1046:::0.1111|
+-------+---------+------+------------------------+-------------------------------------------------------------------------+-----------------+---------------------------------+

Model Information

Model Name: sbiobertresolve_clinical_abbreviation_acronym
Compatibility: Healthcare NLP 3.3.4+
License: Licensed
Edition: Official
Input Labels: [sentence_embeddings]
Output Labels: [abbr_meaning]
Language: en
Size: 105.3 MB
Case sensitive: false