Description
This model maps sentences & documents to a 512-dimensional dense vector space by using average pooling on top of BERT model. It’s also fine-tuned on the RxNorm dataset to help generalization over medication-related datasets.
Predicted Entities
How to use
sentence_embeddings = BertSentenceEmbeddings.pretrained("sbert_jsl_medium_rxnorm_uncased", "en", "clinical/models")\
.setInputCols("sentence")\
.setOutputCol("sbert_embeddings")
val sentence_embeddings = BertSentenceEmbeddings.pretrained("sbert_jsl_medium_rxnorm_uncased", "en", "clinical/models")
.setInputCols("sentence")
.setOutputCol("sbert_embeddings")
import nlu
nlu.load("en.embed_sentence.bert_uncased.rxnorm").predict("""Put your text here.""")
Results
Gives a 512-dimensional vector representation of the sentence.
Model Information
Model Name: | sbert_jsl_medium_rxnorm_uncased |
Compatibility: | Healthcare NLP 3.3.4+ |
License: | Licensed |
Edition: | Official |
Language: | en |
Size: | 153.9 MB |
Case sensitive: | false |