Description
ner_conll_albert_large_uncased
is a Named Entity Recognition (or NER) model, meaning it annotates text to find features like the names of people, places, and organizations. It was trained on the CoNLL 2003 text corpus. This NER model does not read words directly but instead reads word embeddings, which represent words as points such that more semantically similar words are closer together. ner_conll_albert_large_uncased
model is trained withalbert_large_uncased
word embeddings, so be sure to use the same embeddings in the pipeline.
Predicted Entities
PER
, LOC
, ORG
, MISC
Live Demo Open in Colab Download Copy S3 URI
How to use
document_assembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')
tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')
embeddings = AlbertEmbeddings\
.pretrained('albert_large_uncased', 'en')\
.setInputCols(["token", "document"])\
.setOutputCol("embeddings")
ner_model = NerDLModel.pretrained('ner_conll_albert_large_uncased', 'en') \
.setInputCols(['document', 'token', 'embeddings']) \
.setOutputCol('ner')
ner_converter = NerConverter() \
.setInputCols(['document', 'token', 'ner']) \
.setOutputCol('entities')
pipeline = Pipeline(stages=[
document_assembler,
tokenizer,
embeddings,
ner_model,
ner_converter
])
example = spark.createDataFrame([['My name is John!']]).toDF("text")
result = pipeline.fit(example).transform(example)
Model Information
Model Name: | ner_conll_albert_large_uncased |
Type: | ner |
Compatibility: | Spark NLP 3.2.2+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | en |
Data Source
https://www.clips.uantwerpen.be/conll2003/ner/
Benchmarking
Test:
precision recall f1-score support
B-LOC 0.90 0.91 0.91 1668
I-ORG 0.87 0.78 0.82 835
I-MISC 0.60 0.69 0.65 216
I-LOC 0.75 0.87 0.81 257
I-PER 0.98 0.98 0.98 1156
B-MISC 0.78 0.83 0.80 702
B-ORG 0.88 0.84 0.86 1661
B-PER 0.96 0.95 0.96 1617
micro avg 0.89 0.89 0.89 8112
macro avg 0.84 0.86 0.85 8112
weighted avg 0.89 0.89 0.89 8112
processed 46435 tokens with 5648 phrases; found: 5619 phrases; correct: 4956.
accuracy: 88.67%; (non-O)
accuracy: 97.33%; precision: 88.20%; recall: 87.75%; FB1: 87.97
LOC: precision: 89.23%; recall: 89.87%; FB1: 89.55 1680
MISC: precision: 75.10%; recall: 79.49%; FB1: 77.23 743
ORG: precision: 85.99%; recall: 82.06%; FB1: 83.98 1585
PER: precision: 95.34%; recall: 94.99%; FB1: 95.17 1611
Dev:
precision recall f1-score support
B-LOC 0.96 0.96 0.96 1837
I-ORG 0.93 0.78 0.85 751
I-MISC 0.79 0.75 0.77 346
I-LOC 0.88 0.88 0.88 257
I-PER 0.98 0.97 0.97 1307
B-MISC 0.88 0.88 0.88 922
B-ORG 0.91 0.90 0.91 1341
B-PER 0.97 0.97 0.97 1842
micro avg 0.94 0.92 0.93 8603
macro avg 0.91 0.89 0.90 8603
weighted avg 0.94 0.92 0.93 8603
processed 51362 tokens with 5942 phrases; found: 5917 phrases; correct: 5492.
accuracy: 91.87%; (non-O)
accuracy: 98.28%; precision: 92.82%; recall: 92.43%; FB1: 92.62
LOC: precision: 95.37%; recall: 95.21%; FB1: 95.29 1834
MISC: precision: 85.42%; recall: 85.79%; FB1: 85.61 926
ORG: precision: 88.98%; recall: 87.92%; FB1: 88.45 1325
PER: precision: 96.78%; recall: 96.25%; FB1: 96.52 1832