Named Entity Recognition - OntoNotes DistilBERT (ner_ontonotes_distilbert_base_cased)

Description

ner_ontonotes_distilbert_base_cased is a Named Entity Recognition (or NER) model trained on OntoNotes 5.0. It can extract up to 18 entities such as people, places, organizations, money, time, date, etc.

This model uses the pretrained distilbert_base_cased model from the DistilBertEmbeddings annotator as an input.

Predicted Entities

CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE, LAW, LOC, MONEY, NORP, ORDINAL, ORG, PERCENT, PERSON, PRODUCT, QUANTITY, TIME, WORK_OF_ART

Live Demo Open in Colab Download Copy S3 URI

How to use

document_assembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')

tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')

embeddings = DistilBertEmbeddings\
.pretrained('distilbert_base_cased', 'en')\
.setInputCols(["token", "document"])\
.setOutputCol("embeddings")

ner_model = NerDLModel.pretrained('ner_ontonotes_distilbert_base_cased', 'en') \
.setInputCols(['document', 'token', 'embeddings']) \
.setOutputCol('ner')

ner_converter = NerConverter() \
.setInputCols(['document', 'token', 'ner']) \
.setOutputCol('entities')

pipeline = Pipeline(stages=[
document_assembler, 
tokenizer,
embeddings,
ner_model,
ner_converter
])

example = spark.createDataFrame([['My name is John!']]).toDF("text")
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler() 
.setInputCol("text") 
.setOutputCol("document")

val tokenizer = Tokenizer() 
.setInputCols("document") 
.setOutputCol("token")

val embeddings = DistilBertEmbeddings.pretrained("distilbert_base_cased", "en")
.setInputCols("document", "token") 
.setOutputCol("embeddings")

val ner_model = NerDLModel.pretrained("ner_ontonotes_distilbert_base_cased", "en") 
.setInputCols("document"', "token", "embeddings") 
.setOutputCol("ner")

val ner_converter = NerConverter() 
.setInputCols("document", "token", "ner") 
.setOutputCol("entities")

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, embeddings, ner_model, ner_converter))

val example = Seq.empty["My name is John!"].toDS.toDF("text")

val result = pipeline.fit(example).transform(example)
import nlu

text = ["My name is John!"]

ner_df = nlu.load('en.ner.ner_ontonotes_distilbert_base_cased').predict(text, output_level='token')

Model Information

Model Name: ner_ontonotes_distilbert_base_cased
Type: ner
Compatibility: Spark NLP 3.2.0+
License: Open Source
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en

Data Source

https://catalog.ldc.upenn.edu/LDC2013T19

Benchmarking

precision    recall  f1-score   support

B-CARDINAL       0.85      0.85      0.85       935
B-DATE       0.87      0.87      0.87      1602
B-EVENT       0.60      0.56      0.58        63
B-FAC       0.69      0.69      0.69       135
B-GPE       0.96      0.93      0.95      2240
B-LANGUAGE       0.90      0.41      0.56        22
B-LAW       0.74      0.42      0.54        40
B-LOC       0.68      0.80      0.74       179
B-MONEY       0.90      0.92      0.91       314
B-NORP       0.94      0.94      0.94       841
B-ORDINAL       0.84      0.87      0.85       195
B-ORG       0.88      0.89      0.88      1795
B-PERCENT       0.92      0.92      0.92       349
B-PERSON       0.93      0.93      0.93      1988
B-PRODUCT       0.60      0.68      0.64        76
B-QUANTITY       0.80      0.74      0.77       105
B-TIME       0.70      0.57      0.62       212
B-WORK_OF_ART       0.77      0.58      0.66       166
I-CARDINAL       0.77      0.90      0.83       331
I-DATE       0.87      0.92      0.89      2011
I-EVENT       0.61      0.78      0.68       130
I-FAC       0.76      0.81      0.79       213
I-GPE       0.95      0.86      0.90       628
I-LAW       0.90      0.54      0.67       106
I-LOC       0.72      0.80      0.76       180
I-MONEY       0.94      0.98      0.96       685
I-NORP       0.96      0.85      0.90       160
I-ORDINAL       0.00      0.00      0.00         4
I-ORG       0.89      0.92      0.91      2406
I-PERCENT       0.95      0.95      0.95       523
I-PERSON       0.95      0.94      0.94      1412
I-PRODUCT       0.59      0.81      0.68        69
I-QUANTITY       0.88      0.83      0.85       206
I-TIME       0.72      0.65      0.68       255
I-WORK_OF_ART       0.81      0.57      0.67       337
O       0.99      0.99      0.99    131815

accuracy                           0.98    152728
macro avg       0.80      0.77      0.78    152728
weighted avg       0.98      0.98      0.98    152728


processed 152728 tokens with 11257 phrases; found: 11127 phrases; correct: 9747.
accuracy:  88.49%; (non-O)
accuracy:  97.78%; precision:  87.60%; recall:  86.59%; FB1:  87.09
CARDINAL: precision:  83.58%; recall:  83.85%; FB1:  83.72  938
DATE: precision:  84.94%; recall:  84.52%; FB1:  84.73  1594
EVENT: precision:  58.62%; recall:  53.97%; FB1:  56.20  58
FAC: precision:  68.66%; recall:  68.15%; FB1:  68.40  134
GPE: precision:  95.96%; recall:  92.37%; FB1:  94.13  2156
LANGUAGE: precision:  90.00%; recall:  40.91%; FB1:  56.25  10
LAW: precision:  69.57%; recall:  40.00%; FB1:  50.79  23
LOC: precision:  65.40%; recall:  77.09%; FB1:  70.77  211
MONEY: precision:  88.79%; recall:  90.76%; FB1:  89.76  321
NORP: precision:  93.45%; recall:  93.34%; FB1:  93.40  840
ORDINAL: precision:  83.74%; recall:  87.18%; FB1:  85.43  203
ORG: precision:  85.34%; recall:  86.57%; FB1:  85.95  1821
PERCENT: precision:  89.02%; recall:  88.25%; FB1:  88.63  346
PERSON: precision:  91.40%; recall:  91.45%; FB1:  91.43  1989
PRODUCT: precision:  58.14%; recall:  65.79%; FB1:  61.73  86
QUANTITY: precision:  78.79%; recall:  74.29%; FB1:  76.47  99
TIME: precision:  65.70%; recall:  53.30%; FB1:  58.85  172
WORK_OF_ART: precision:  71.43%; recall:  54.22%; FB1:  61.64  126