ALBERT Embeddings (Base Uncase)

Description

ALBERT is “A Lite” version of BERT, a popular unsupervised language representation learning algorithm. ALBERT uses parameter-reduction techniques that allow for large-scale configurations, overcome previous memory limitations, and achieve better behavior with respect to model degradation. The details are described in the paper “ALBERT: A Lite BERT for Self-supervised Learning of Language Representations.

Download Copy S3 URICopied!

How to use

embeddings = AlbertEmbeddings.pretrained("albert_base_uncased", "en") \
.setInputCols("sentence", "token") \
.setOutputCol("embeddings")

Model Information

Model Name: albert_base_uncased
Compatibility: Spark NLP 3.1.1+
License: Open Source
Edition: Official
Input Labels: [token, sentence]
Output Labels: [embeddings]
Language: en
Case sensitive: false

Data Source

https://huggingface.co/albert-base-v2