Description
This model maps extracted medical entities to CPT codes using sbiobert_base_cased_mli
Sentence Bert Embeddings. This model is enriched with augmented data for better performance.
Predicted Entities
CPT codes and their descriptions.
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = SentenceDetector()\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")
clinical_ner = MedicalNerModel.pretrained("ner_clinical_large", "en", "clinical/models") \
.setInputCols(["sentence", "token", "embeddings"]) \
.setOutputCol("ner")
ner_converter = NerConverter()\
.setInputCols(["sentence", "token", "ner"])\
.setOutputCol("ner_chunk")
chunk2doc = Chunk2Doc()\
.setInputCols("ner_chunk")\
.setOutputCol("ner_chunk_doc")
sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en","clinical/models")\
.setInputCols(["ner_chunk_doc"])\
.setOutputCol("sbert_embeddings")
resolver = SentenceEntityResolverModel.load("sbiobertresolve_cpt_augmented") \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")
nlpPipeline = Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
clinical_ner,
ner_converter,
chunk2doc,
sbert_embedder,
resolver])
data = spark.createDataFrame([["This is an 82 - year-old male with a history of prior tobacco use , hypertension , chronic renal insufficiency , COPD , gastritis , and TIA who initially presented to Braintree with a non-ST elevation MI and Guaiac positive stools , transferred to St . Margaret\'s Center for Women & Infants for cardiac catheterization with PTCA to mid LAD lesion complicated by hypotension and bradycardia requiring Atropine , IV fluids and transient dopamine possibly secondary to vagal reaction , subsequently transferred to CCU for close monitoring , hemodynamically stable at the time of admission to the CCU ."]]).toDF("text")
results = nlpPipeline.fit(data).transform(data)
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = SentenceDetectorDLModel.pretrained("sentence_detector_dl_healthcare", "en", "clinical/models")
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
val word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
.setInputCols(Array("sentence", "token"))
.setOutputCol("embeddings")
val clinical_ner = MedicalNerModel.pretrained("ner_clinical_large", "en", "clinical/models")
.setInputCols(Array("sentence", "token", "embeddings"))
.setOutputCol("ner")
val ner_converter = new NerConverter()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
val chunk2doc = new Chunk2Doc()
.setInputCols("ner_chunk")
.setOutputCol("ner_chunk_doc")
val sbert_embedder = BertSentenceEmbeddings
.pretrained("sbiobert_base_cased_mli","en","clinical/models")
.setInputCols("ner_chunk_doc")
.setOutputCol("sbert_embeddings")
val resolver = SentenceEntityResolverModel.load("sbiobertresolve_cpt_augmented")
.setInputCols(Array("sbert_embeddings"))
.setOutputCol("resolution")
.setDistanceFunction("EUCLIDEAN")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, word_embeddings, clinical_ner, ner_converter, chunk2doc, sbert_embedder, icdo_resolver))
val data = Seq("""This is an 82 - year-old male with a history of prior tobacco use , hypertension , chronic renal insufficiency , COPD , gastritis , and TIA who initially presented to Braintree with a non-ST elevation MI and Guaiac positive stools , transferred to St . Margaret\'s Center for Women & Infants for cardiac catheterization with PTCA to mid LAD lesion complicated by hypotension and bradycardia requiring Atropine , IV fluids and transient dopamine possibly secondary to vagal reaction , subsequently transferred to CCU for close monitoring , hemodynamically stable at the time of admission to the CCU .""").toDS.toDF("text")
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.resolve.cpt.augmented").predict("""This is an 82 - year-old male with a history of prior tobacco use , hypertension , chronic renal insufficiency , COPD , gastritis , and TIA who initially presented to Braintree with a non-ST elevation MI and Guaiac positive stools , transferred to St . Margaret\'s Center for Women & Infants for cardiac catheterization with PTCA to mid LAD lesion complicated by hypotension and bradycardia requiring Atropine , IV fluids and transient dopamine possibly secondary to vagal reaction , subsequently transferred to CCU for close monitoring , hemodynamically stable at the time of admission to the CCU .""")
Results
+--------------------+-----+---+-------+-----+----------+--------------------+--------------------+
| chunk|begin|end| entity| code|confidence| all_k_resolutions| all_k_codes|
+--------------------+-----+---+-------+-----+----------+--------------------+--------------------+
| hypertension| 68| 79|PROBLEM|36440| 0.3349|Hypertransfusion:...|36440:::24935:::0...|
|chronic renal ins...| 83|109|PROBLEM|50395| 0.0821|Nephrostomy:::Ren...|50395:::50328:::5...|
| COPD| 113|116|PROBLEM|32960| 0.1575|Lung collapse pro...|32960:::32215:::1...|
| gastritis| 120|128|PROBLEM|43501| 0.1772|Gastric ulcer sut...|43501:::43631:::4...|
| TIA| 136|138|PROBLEM|61460| 0.1432|Intracranial tran...|61460:::64742:::2...|
|a non-ST elevatio...| 182|202|PROBLEM|61624| 0.1151|Percutaneous non-...|61624:::61626:::3...|
|Guaiac positive s...| 208|229|PROBLEM|44005| 0.1115|Enterolysis:::Abd...|44005:::49080:::4...|
| mid LAD lesion| 332|345|PROBLEM|0281T| 0.2407|Plication of left...|0281T:::93462:::9...|
| hypotension| 362|372|PROBLEM|99135| 0.9935|Induced hypotensi...|99135:::99185:::9...|
| bradycardia| 378|388|PROBLEM|99135| 0.3884|Induced hypotensi...|99135:::33305:::3...|
| vagal reaction| 466|479|PROBLEM|55450| 0.1427|Vasoligation:::Va...|55450:::64408:::7...|
+--------------------+-----+---+-------+-----+----------+--------------------+--------------------+
Model Information
Model Name: | sbiobertresolve_cpt_augmented |
Compatibility: | Healthcare NLP 3.0.4+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence_embeddings] |
Output Labels: | [cpt_code_aug] |
Language: | en |
Case sensitive: | false |
References
CPT resolver models are removed from the Models Hub due to license restrictions and can only be shared with the users who already have a valid CPT license. If you possess one and wish to use this model, kindly contact us at support@johnsnowlabs.com.