Description
This model is trained to generate contextual sentence embeddings of input sentences.
How to use
sbiobert_embeddings = BertSentenceEmbeddings\
.pretrained("sbert_jsl_medium_umls_uncased","en","clinical/models")\
.setInputCols(["sentence"])\
.setOutputCol("sbert_embeddings")
val sbiobert_embeddings = BertSentenceEmbeddings
.pretrained("sbert_jsl_medium_umls_uncased","en","clinical/models")
.setInputCols("sentence")
.setOutputCol("sbert_embeddings")
import nlu
nlu.load("en.embed_sentence.bert.jsl_medium_umls_uncased").predict("""Put your text here.""")
Results
Gives a 768 dimensional vector representation of the sentence.
Model Information
| Model Name: | sbert_jsl_medium_umls_uncased | 
| Compatibility: | Healthcare NLP 3.0.3+ | 
| License: | Licensed | 
| Edition: | Official | 
| Language: | en | 
| Case sensitive: | false | 
Data Source
Tuned on MedNLI and UMLS dataset
Benchmarking
MedNLI   Score
Acc      0.744 
STS(cos) 0.695