Description
Map clinical NER entities to LOINC codes.
Predicted Entities
LOINC codes - per input NER entity
Live Demo Open in Colab Copy S3 URI
How to use
documentAssembler = DocumentAssembler()\
    .setInputCol('text')\
    .setOutputCol('document')
sentenceDetector = SentenceDetector() \
    .setInputCols(["document"]) \
    .setOutputCol("sentence")
tokenizer = Tokenizer() \
    .setInputCols(["sentence"]) \
    .setOutputCol("token")
stopwords = StopWordsCleaner.pretrained()\
    .setInputCols("token")\
    .setOutputCol("cleanTokens")\
    .setCaseSensitive(False)
word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
    .setInputCols(["sentence", "cleanTokens"])\
    .setOutputCol("embeddings")
clinical_ner = MedicalNerModel.pretrained("ner_clinical", "en", "clinical/models") \
    .setInputCols(["sentence", "token", "embeddings"]) \
    .setOutputCol("ner")
ner_converter = NerConverter() \
    .setInputCols(["sentence", "cleanTokens", "ner"]) \
    .setOutputCol("ner_chunk")
chunk2doc = Chunk2Doc()\
    .setInputCols("ner_chunk")\
    .setOutputCol("ner_chunk_doc")
sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en","clinical/models")\
    .setInputCols(["ner_chunk_doc"])\
    .setOutputCol("sbert_embeddings")
resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_loinc","en", "clinical/models") \
    .setInputCols(["sbert_embeddings"]) \
    .setOutputCol("resolution")\
    .setDistanceFunction("EUCLIDEAN")
pipeline_loinc = Pipeline(stages = [documentAssembler, sentenceDetector, tokenizer, stopwords, word_embeddings, clinical_ner, ner_converter, chunk2doc, sbert_embedder, resolver])
data = spark.createDataFrame([["""A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus (T2DM), one prior episode of HTG-induced pancreatitis three years prior to presentation, associated with an acute hepatitis, and obesity with a body mass index (BMI) of 33.5 kg/m2, presented with a one-week history of polyuria, polydipsia, poor appetite, and vomiting."""]]).toDF("text")
results = pipeline_loinc.fit(data).transform(data)
val documentAssembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
val sentenceDetector = new SentenceDetector()
    .setInputCols("document")
    .setOutputCol("sentence")
val tokenizer = new Tokenizer()
    .setInputCols("sentence")
    .setOutputCol("token")
val stopwords = StopWordsCleaner.pretrained()
    .setInputCols("token")
    .setOutputCol("cleanTokens")
    .setCaseSensitive(False)
val word_embeddings = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
    .setInputCols(Array("sentence", "cleanTokens"))
    .setOutputCol("embeddings")
val clinical_ner = MedicalNerModel.pretrained("ner_clinical", "en", "clinical/models")
    .setInputCols(Array("sentence", "token", "embeddings"))
    .setOutputCol("ner")
val ner_converter = new NerConverter() 
    .setInputCols(Array("sentence", "cleanTokens", "ner"))
    .setOutputCol("ner_chunk")
val chunk2doc = new Chunk2Doc()
    .setInputCols("ner_chunk")
    .setOutputCol("ner_chunk_doc")
val sbert_embedder = BertSentenceEmbeddings.pretrained("sbiobert_base_cased_mli","en","clinical/models")
    .setInputCols("ner_chunk_doc")
    .setOutputCol("sbert_embeddings")
val resolver = SentenceEntityResolverModel.pretrained("sbiobertresolve_loinc","en", "clinical/models")
    .setInputCols(Array("sbert_embeddings"))
    .setOutputCol("resolution")
    .setDistanceFunction("EUCLIDEAN")
val pipeline_loinc = new Pipeline().setStages(Array(documentAssembler, sentenceDetector, tokenizer, stopwords, word_embeddings, clinical_ner, ner_converter, chunk2doc, sbert_embedder, resolver))
val data = Seq("""A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus (T2DM), one prior episode of HTG-induced pancreatitis three years prior to presentation, associated with an acute hepatitis, and obesity with a body mass index (BMI) of 33.5 kg/m2, presented with a one-week history of polyuria, polydipsia, poor appetite, and vomiting.""").toDS().toDF("text")
val results = pipeline_loinc.fit(data).transform(data)
import nlu
nlu.load("en.resolve.loinc").predict("""A 28-year-old female with a history of gestational diabetes mellitus diagnosed eight years prior to presentation and subsequent type two diabetes mellitus (T2DM), one prior episode of HTG-induced pancreatitis three years prior to presentation, associated with an acute hepatitis, and obesity with a body mass index (BMI) of 33.5 kg/m2, presented with a one-week history of polyuria, polydipsia, poor appetite, and vomiting.""")
Results
|    | chunk                                 | loinc_code   |
|---:|:--------------------------------------|:-------------|
|  0 | gestational diabetes mellitus         | 45636-8      |
|  1 | subsequent type two diabetes mellitus | 44877-9      |
|  2 | T2DM                                  | 45636-8      |
|  3 | HTG-induced pancreatitis              | 66667-7      |
|  4 | an acute hepatitis                    | 45690-5      |
|  5 | obesity                               | 73708-0      |
|  6 | a body mass index                     | 59574-4      |
|  7 | BMI                                   | 59574-4      |
|  8 | polyuria                              | 28239-2      |
|  9 | polydipsia                            | 90552-1      |
| 10 | poor appetite                         | 28387-9      |
| 11 | vomiting                              | 81224-8      |
Model Information
| Model Name: | sbiobertresolve_loinc | 
| Compatibility: | Healthcare NLP 3.0.0+ | 
| License: | Licensed | 
| Edition: | Official | 
| Input Labels: | [sentence_embeddings] | 
| Output Labels: | [loinc_code] | 
| Language: | en | 
Data Source
Trained on standard LOINC coding system.