Detect posology entities (large-biobert)

Description

Detect Drug, Dosage and administration instructions in text using pretraiend NER model.

Predicted Entities

DOSAGE, DRUG, STRENGTH, FORM, DURATION, FREQUENCY, ROUTE

Live Demo Open in Colab Copy S3 URICopied!

How to use

document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")
         
sentence_detector = SentenceDetector()\
    .setInputCols(["document"])\
    .setOutputCol("sentence")

embeddings_clinical = BertEmbeddings.pretrained("biobert_pubmed_base_cased")\
    .setInputCols(["sentence", "token"])\
    .setOutputCol("embeddings")

clinical_ner = MedicalNerModel.pretrained("ner_posology_large_biobert", "en", "clinical/models")\
    .setInputCols(["sentence", "token", "embeddings"])\
    .setOutputCol("ner")

ner_converter = NerConverter()\
 	.setInputCols(["sentence", "token", "ner"])\
 	.setOutputCol("ner_chunk")

nlpPipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, embeddings_clinical, clinical_ner, ner_converter])

model = nlpPipeline.fit(spark.createDataFrame([[""]]).toDF("text"))

results = model.transform(spark.createDataFrame([["EXAMPLE_TEXT"]]).toDF("text"))

Model Information

Model Name: ner_posology_large_biobert
Compatibility: Healthcare NLP 3.0.0+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en