Description
Extract units and other measurements in reports, prescription and other medical texts using pretrained NER model.
Predicted Entities
Units, Measurements
How to use
document_assembler = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")
         
sentence_detector = SentenceDetector()\
    .setInputCols(["document"])\
    .setOutputCol("sentence")
tokenizer = Tokenizer()\
    .setInputCols(["sentence"])\
    .setOutputCol("token")
embeddings_clinical = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")\
    .setInputCols(["sentence", "token"])\
    .setOutputCol("embeddings")
clinical_ner = MedicalNerModel.pretrained("ner_measurements_clinical", "en", "clinical/models")\
    .setInputCols(["sentence", "token", "embeddings"])\
    .setOutputCol("ner")
ner_converter = NerConverter()\
 	.setInputCols(["sentence", "token", "ner"])\
 	.setOutputCol("ner_chunk")
nlpPipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, embeddings_clinical, clinical_ner, ner_converter])
model = nlpPipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
results = model.transform(spark.createDataFrame([["EXAMPLE_TEXT"]]).toDF("text"))
val document_assembler = new DocumentAssembler()
    .setInputCol("text")
    .setOutputCol("document")
         
val sentence_detector = new SentenceDetector()
    .setInputCols("document")
    .setOutputCol("sentence")
val tokenizer = new Tokenizer()
    .setInputCols("sentence")
    .setOutputCol("token")
val embeddings_clinical = WordEmbeddingsModel.pretrained("embeddings_clinical", "en", "clinical/models")
    .setInputCols(Array("sentence", "token"))
    .setOutputCol("embeddings")
val ner = MedicalNerModel.pretrained("ner_measurements_clinical", "en", "clinical/models")
    .setInputCols(Array("sentence", "token", "embeddings"))
    .setOutputCol("ner")
val ner_converter = new NerConverter()
 	.setInputCols(Array("sentence", "token", "ner"))
 	.setOutputCol("ner_chunk")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, embeddings_clinical, ner, ner_converter))
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.med_ner.measurements").predict("""Put your text here.""")
Model Information
| Model Name: | ner_measurements_clinical | 
| Compatibility: | Healthcare NLP 3.0.0+ | 
| License: | Licensed | 
| Edition: | Official | 
| Input Labels: | [sentence, token, embeddings] | 
| Output Labels: | [ner] | 
| Language: | en |