Detect diseases in medical text (biobert)

Description

Extract entities pertaining to different types of general diseases using pretrained NER model.

Predicted Entities

Disease

Live Demo Open in Colab Download

How to use


...
embeddings_clinical = BertEmbeddings.pretrained("biobert_pubmed_base_cased")  .setInputCols(["sentence", "token"])  .setOutputCol("embeddings")
clinical_ner = MedicalNerModel.pretrained("ner_diseases_biobert", "en", "clinical/models")   .setInputCols(["sentence", "token", "embeddings"])   .setOutputCol("ner")
...
nlpPipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, embeddings_clinical, clinical_ner, ner_converter])
model = nlpPipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
results = model.transform(spark.createDataFrame([["EXAMPLE_TEXT"]]).toDF("text"))

...
val embeddings_clinical = BertEmbeddings.pretrained("biobert_pubmed_base_cased")
  .setInputCols(Array("sentence", "token"))
  .setOutputCol("embeddings")
val ner = MedicalNerModel.pretrained("ner_diseases_biobert", "en", "clinical/models")
  .setInputCols(Array("sentence", "token", "embeddings"))
  .setOutputCol("ner")
...
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, embeddings_clinical, ner, ner_converter))
val result = pipeline.fit(Seq.empty[""].toDS.toDF("text")).transform(data)

Model Information

Model Name: ner_diseases_biobert
Compatibility: Spark NLP for Healthcare 3.0.0+
License: Licensed
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en