Description
Detect adverse drug events in tweets, reviews, and medical text using pretrained NER model.
Predicted Entities
DRUG
, ADE
Live Demo Open in Colab Copy S3 URI
How to use
document_assembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")
sentence_detector = SentenceDetector()\
.setInputCols(["document"])\
.setOutputCol("sentence")
tokenizer = Tokenizer()\
.setInputCols(["sentence"])\
.setOutputCol("token")
embeddings_clinical = BertEmbeddings.pretrained("biobert_clinical_base_cased")\
.setInputCols(["sentence", "token"])\
.setOutputCol("embeddings")
clinical_ner = MedicalNerModel.pretrained("ner_ade_clinicalbert", "en", "clinical/models")\
.setInputCols(["sentence", "token", "embeddings"])\
.setOutputCol("ner")
ner_converter = NerConverter() \
.setInputCols(["sentence", "token", "ner"]) \
.setOutputCol("ner_chunk")
nlpPipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, embeddings_clinical, clinical_ner, ner_converter])
model = nlpPipeline.fit(spark.createDataFrame([[""]]).toDF("text"))
results = model.transform(spark.createDataFrame([["EXAMPLE_TEXT"]]).toDF("text"))
val document_assembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = new SentenceDetector()
.setInputCols("document")
.setOutputCol("sentence")
val tokenizer = new Tokenizer()
.setInputCols("sentence")
.setOutputCol("token")
val embeddings_clinical = BertEmbeddings.pretrained("biobert_clinical_base_cased")
.setInputCols(Array("sentence", "token"))
.setOutputCol("embeddings")
val ner = MedicalNerModel.pretrained("ner_ade_clinicalbert", "en", "clinical/models")
.setInputCols(Array("sentence", "token", "embeddings"))
.setOutputCol("ner")
val ner_converter = new NerConverter()
.setInputCols(Array("sentence", "token", "ner"))
.setOutputCol("ner_chunk")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, embeddings_clinical, ner, ner_converter))
val result = pipeline.fit(data).transform(data)
import nlu
nlu.load("en.med_ner.ade.clinical_bert").predict("""Put your text here.""")
Model Information
Model Name: | ner_ade_clinicalbert |
Compatibility: | Healthcare NLP 3.0.0+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | en |
Benchmarking
label precision recall f1-score support
B-ADE 0.46 0.79 0.58 3582
B-DRUG 0.90 0.62 0.74 11763
I-ADE 0.45 0.76 0.56 4309
I-DRUG 0.96 0.26 0.41 7654
O 0.96 0.98 0.97 303457
accuracy - - 0.94 330765
macro-avg 0.75 0.68 0.65 330765
weighted-avg 0.95 0.94 0.94 330765