Description
Named Entity Recognition annotator (NERDLModel) allows for a generic model to be trained by utilizing a deep learning algorithm (Char CNNs - BiLSTM - CRF - word embeddings) inspired on a former state of the art model for NER: Chiu & Nicols, Named Entity Recognition with Bidirectional LSTM,CNN. Deidentification NER (DL) is a Named Entity Recognition model that annotates text to find protected health information that may need to be deidentified.
Predicted Entities
Age
,BIOID
,City
,Country
,Country
,Date
,Device
,Doctor
,EMail
,Hospital
,Fax
,Healthplan
,Hospital
,,Idnum
,Location-Other
,Medicalrecord
,Organization
,Patient
,Phone
,Profession
,State
,Street
,URL
,Username
,Zip
Live Demo Open in Colab Copy S3 URI
How to use
Model is trained with the ‘embeddings_clinical’ word embeddings model, so be sure to use the same embeddings in the pipeline.
...
model = NerDLModel.pretrained("ner_deidentify_dl","en","clinical/models") \
.setInputCols("sentence","token","word_embeddings") \
.setOutputCol("ner")
...
nlp_pipeline = Pipeline(stages=[document_assembler, sentence_detector, tokenizer, word_embeddings, model, ner_converter])
light_pipeline = LightPipeline(nlp_pipeline.fit(spark.createDataFrame([['']]).toDF("text")))
input_text = [ '''A . Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson , Ora MR . # 7194334 Date : 01/13/93 PCP : Oliveira , 25 month years-old , Record date : 2079-11-09 . Cocke County Baptist Hospital . 0295 Keats Street''']
result = pipeline_model.transform(spark.createDataFrame([input_text], ["text"]))
val model = NerDLModel.pretrained("ner_deidentify_dl","en","clinical/models")
.setInputCols("sentence","token","word_embeddings")
.setOutputCol("ner")
...
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, tokenizer, word_embeddings, model, ner_converter))
val result = pipeline.fit(Seq.empty [ '''A . Record date : 2093-01-13 , David Hale , M.D . , Name : Hendrickson , Ora MR . # 7194334 Date : 01/13/93 PCP : Oliveira , 25 month years-old , Record date : 2079-11-09 . Cocke County Baptist Hospital . 0295 Keats Street''']).toDS.toDF("text")).transform(data)
Results
+---------------+-----+
|ner_label |count|
+---------------+-----+
|O |28 |
|I-HOSPITAL |4 |
|B-DATE |3 |
|I-STREET |3 |
|I-PATIENT |2 |
|B-DOCTOR |2 |
|B-AGE |1 |
|B-PATIENT |1 |
|I-DOCTOR |1 |
|B-MEDICALRECORD|1 |
+---------------+-----+.
+-----------------------------+-------------+
|chunk |ner_label |
+-----------------------------+-------------+
|2093-01-13 |DATE |
|David Hale |DOCTOR |
|Hendrickson , Ora |PATIENT |
|7194334 |MEDICALRECORD|
|01/13/93 |DATE |
|Oliveira |DOCTOR |
|25 |AGE |
|2079-11-09 |DATE |
|Cocke County Baptist Hospital|HOSPITAL |
|0295 Keats Street |STREET |
+-----------------------------+-------------+
Model Information
Model Name: | ner_deidentify_dl |
Type: | ner |
Compatibility: | Spark NLP 2.7.2+ |
License: | Licensed |
Edition: | Official |
Input Labels: | [sentence, token, embeddings] |
Output Labels: | [ner] |
Language: | en |
Dependencies: | embeddings_clinical |
Data Source
Trained on JSL enriched n2c2 2014: De-identification and Heart Disease Risk Factors Challenge datasets with embeddings_clinical https://portal.dbmi.hms.harvard.edu/projects/n2c2-2014/
Benchmarking
| | label | tp | fp | fn | prec | rec | f1 |
|---:|:-----------------|------:|-----:|-----:|---------:|---------:|---------:|
| 1 | I-AGE | 7 | 3 | 6 | 0.7 | 0.538462 | 0.608696 |
| 2 | I-DOCTOR | 800 | 27 | 94 | 0.967352 | 0.894855 | 0.929692 |
| 3 | I-IDNUM | 6 | 0 | 2 | 1 | 0.75 | 0.857143 |
| 4 | B-DATE | 1883 | 34 | 56 | 0.982264 | 0.971119 | 0.97666 |
| 5 | I-DATE | 425 | 28 | 25 | 0.93819 | 0.944444 | 0.941307 |
| 6 | B-PHONE | 29 | 7 | 9 | 0.805556 | 0.763158 | 0.783784 |
| 7 | B-STATE | 87 | 4 | 11 | 0.956044 | 0.887755 | 0.920635 |
| 8 | B-CITY | 35 | 11 | 26 | 0.76087 | 0.57377 | 0.654206 |
| 9 | I-ORGANIZATION | 12 | 4 | 15 | 0.75 | 0.444444 | 0.55814 |
| 10 | B-DOCTOR | 728 | 75 | 53 | 0.9066 | 0.932138 | 0.919192 |
| 11 | I-PROFESSION | 43 | 11 | 13 | 0.796296 | 0.767857 | 0.781818 |
| 12 | I-PHONE | 62 | 4 | 4 | 0.939394 | 0.939394 | 0.939394 |
| 13 | B-AGE | 234 | 13 | 16 | 0.947368 | 0.936 | 0.94165 |
| 14 | B-STREET | 20 | 7 | 16 | 0.740741 | 0.555556 | 0.634921 |
| 15 | I-ZIP | 60 | 3 | 2 | 0.952381 | 0.967742 | 0.96 |
| 16 | I-MEDICALRECORD | 54 | 5 | 2 | 0.915254 | 0.964286 | 0.93913 |
| 17 | B-ZIP | 2 | 1 | 0 | 0.666667 | 1 | 0.8 |
| 18 | B-HOSPITAL | 256 | 23 | 66 | 0.917563 | 0.795031 | 0.851913 |
| 19 | I-STREET | 150 | 17 | 20 | 0.898204 | 0.882353 | 0.890208 |
| 20 | B-COUNTRY | 22 | 2 | 8 | 0.916667 | 0.733333 | 0.814815 |
| 21 | I-COUNTRY | 1 | 0 | 0 | 1 | 1 | 1 |
| 22 | I-STATE | 6 | 0 | 1 | 1 | 0.857143 | 0.923077 |
| 23 | B-USERNAME | 30 | 0 | 4 | 1 | 0.882353 | 0.9375 |
| 24 | I-HOSPITAL | 295 | 37 | 64 | 0.888554 | 0.821727 | 0.853835 |
| 25 | I-PATIENT | 243 | 26 | 41 | 0.903346 | 0.855634 | 0.878843 |
| 26 | B-PROFESSION | 52 | 8 | 17 | 0.866667 | 0.753623 | 0.806202 |
| 27 | B-IDNUM | 32 | 3 | 12 | 0.914286 | 0.727273 | 0.810127 |
| 28 | I-CITY | 76 | 15 | 13 | 0.835165 | 0.853933 | 0.844444 |
| 29 | B-PATIENT | 337 | 29 | 40 | 0.920765 | 0.893899 | 0.907133 |
| 30 | B-MEDICALRECORD | 74 | 6 | 4 | 0.925 | 0.948718 | 0.936709 |
| 31 | B-ORGANIZATION | 20 | 5 | 13 | 0.8 | 0.606061 | 0.689655 |
| 32 | Macro-average | 6083 | 408 | 673 | 0.7976 | 0.697533 | 0.744218 |
| 33 | Micro-average | 6083 | 408 | 673 | 0.937144 | 0.900385 | 0.918397 |