Description
This model maps extracted medical entities to CPT codes using chunk embeddings.
Predicted Entities
CPT Codes and their normalized definition with sbiobert_base_cased_mli
sentence embeddings.
How to use
...
chunk2doc = Chunk2Doc()\
.setInputCols("ner_chunk")
.setOutputCol("ner_chunk_doc")
sbert_embedder = BertSentenceEmbeddings\
.pretrained("sbiobert_base_cased_mli","en","clinical/models")\
.setInputCols(["ner_chunk_doc"])\
.setOutputCol("sbert_embeddings")
cpt_resolver = SentenceEntityResolverModel.load("sbiobertresolve_cpt") \
.setInputCols(["sbert_embeddings"]) \
.setOutputCol("resolution")\
.setDistanceFunction("EUCLIDEAN")
nlpPipeline = Pipeline(stages=[
document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
clinical_ner,
ner_converter,
chunk2doc,
sbert_embedder,
cpt_resolver])
data = spark.createDataFrame([["This is an 82 - year-old male with a history of prior tobacco use , hypertension , chronic renal insufficiency , COPD , gastritis , and TIA who initially presented to Braintree with a non-ST elevation MI and Guaiac positive stools , transferred to St . Margaret\'s Center for Women & Infants for cardiac catheterization with PTCA to mid LAD lesion complicated by hypotension and bradycardia requiring Atropine , IV fluids and transient dopamine possibly secondary to vagal reaction , subsequently transferred to CCU for close monitoring , hemodynamically stable at the time of admission to the CCU ."]]).toDF("text")
results = nlpPipeline.fit(data).transform(data)
...
chunk2doc = Chunk2Doc()
.setInputCols("ner_chunk")
.setOutputCol("ner_chunk_doc")
val sbert_embedder = BertSentenceEmbeddings
.pretrained("sbiobert_base_cased_mli","en","clinical/models")
.setInputCols(Array("ner_chunk_doc"))
.setOutputCol("sbert_embeddings")
val cpt_resolver = SentenceEntityResolverModel
.load("sbiobertresolve_cpt")
.setInputCols(Array("ner_chunk", "sbert_embeddings"))
.setOutputCol("resolution")
.setDistanceFunction("EUCLIDEAN")
val pipeline = new Pipeline().setStages(
Array(
document_assembler,
sentence_detector,
tokenizer,
word_embeddings,
clinical_ner,
ner_converter,
chunk2doc,
sbert_embedder,
cpt_resolver))
val data = Seq("This is an 82 - year-old male with a history of prior tobacco use , hypertension , chronic renal insufficiency , COPD , gastritis , and TIA who initially presented to Braintree with a non-ST elevation MI and Guaiac positive stools , transferred to St . Margaret\'s Center for Women & Infants for cardiac catheterization with PTCA to mid LAD lesion complicated by hypotension and bradycardia requiring Atropine , IV fluids and transient dopamine possibly secondary to vagal reaction , subsequently transferred to CCU for close monitoring , hemodynamically stable at the time of admission to the CCU .").toDF("text")
val result = pipeline.fit(data).transform(data)
Results
+--------------------+-----+---+---------+-----+----------+--------------------+--------------------+
| chunk|begin|end| entity| code|confidence| all_k_resolutions| all_k_codes|
+--------------------+-----+---+---------+-----+----------+--------------------+--------------------+
| hypertension| 68| 79| PROBLEM|49425| 0.0967|Insertion of peri...|49425:::36818:::3...|
|chronic renal ins...| 83|109| PROBLEM|50070| 0.2569|Nephrolithotomy; ...|50070:::49425:::5...|
| COPD| 113|116| PROBLEM|49425| 0.0779|Insertion of peri...|49425:::31592:::4...|
| gastritis| 120|128| PROBLEM|43810| 0.5289|Gastroduodenostom...|43810:::43880:::4...|
| TIA| 136|138| PROBLEM|25927| 0.2060|Transmetacarpal a...|25927:::25931:::6...|
|a non-ST elevatio...| 182|202| PROBLEM|33300| 0.3046|Repair of cardiac...|33300:::33813:::3...|
|Guaiac positive s...| 208|229| PROBLEM|47765| 0.0974|Anastomosis, of i...|47765:::49425:::1...|
|cardiac catheteri...| 295|317| TEST|62225| 0.1996|Replacement or ir...|62225:::33722:::4...|
| PTCA| 324|327|TREATMENT|60500| 0.1481|Parathyroidectomy...|60500:::43800:::2...|
| mid LAD lesion| 332|345| PROBLEM|33722| 0.3097|Closure of aortic...|33722:::33732:::3...|
+--------------------+-----+---+---------+-----+----------+--------------------+--------------------+
Model Information
Name: | sbiobertresolve_cpt |
Type: | SentenceEntityResolverModel |
Compatibility: | Spark NLP 2.6.4 + |
License: | Licensed |
Edition: | Official |
Input labels: | [ner_chunk, chunk_embeddings] |
Output labels: | [resolution] |
Language: | en |
Dependencies: | sbiobert_base_cased_mli |
Data Source
Trained on Current Procedural Terminology dataset with sbiobert_base_cased_mli
sentence embeddings.
References
CPT resolver models are removed from the Models Hub due to license restrictions and can only be shared with the users who already have a valid CPT license. If you possess one and wish to use this model, kindly contact us at support@johnsnowlabs.com.