Description
Word Embeddings lookup annotator that maps tokens to vectors.
How to use
model = WordEmbeddingsModel.pretrained("embeddings_healthcare_100d","en","clinical/models")\
.setInputCols(["document","token"])\
.setOutputCol("word_embeddings")
val model = WordEmbeddingsModel.pretrained("embeddings_healthcare_100d","en","clinical/models")
.setInputCols("document","token")
.setOutputCol("word_embeddings")
import nlu
nlu.load("en.embed.glove.healthcare_100d").predict("""Put your text here.""")
Results
Word2Vec feature vectors based on embeddings_healthcare_100d
.
Model Information
Name: | embeddings_healthcare_100d |
Type: | WordEmbeddingsModel |
Compatibility: | Spark NLP 2.5.0+ |
License: | Licensed |
Edition: | Official |
Input labels: | [document, token] |
Output labels: | [word_embeddings] |
Language: | en |
Dimension: | 100.0 |
Data Source
Trained on PubMed + ICD10 + UMLS + MIMIC III corpora https://www.nlm.nih.gov/databases/download/pubmed_medline.html
PREVIOUSEmbeddings Sciwiki 50 dims