sparknlp_jsl.legal.sequence_generation.qa_ner_generator
#
Module Contents#
Classes#
The chunk mapper Approach load a JsonDictionary that have the relations to be mapped in the ChunkMapperModel |
- class LegalNerQuestionGenerator(classname='com.johnsnowlabs.legal.sequence_generation.LegalNerQuestionGenerator', java_model=None)#
Bases:
sparknlp_jsl.annotator.NerQuestionGenerator
The chunk mapper Approach load a JsonDictionary that have the relations to be mapped in the ChunkMapperModel
Input Annotation types
Output Annotation type
CHUNK
LABEL_DEPENDENCY
- Parameters:
dictionary – Dictionary path where is the json that contains the mappinmgs columns
rel – Relation that we going to use to map the chunk
lowerCase – Parameter to decide if we going to use the chunk mapper or not
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp_jsl.common import * >>> from sparknlp.annotator import * >>> from sparknlp.training import * >>> import sparknlp_jsl >>> from sparknlp_jsl.base import * >>> from sparknlp_jsl.annotator import * >>> from pyspark.ml import Pipeline >>> documenter = DocumentAssembler() ... .setInputCol("text") ... .setOutputCol("documents") >>> sentence_detector = SentenceDetector() ... .setInputCols("documents") ... .setOutputCol("sentences") >>> tokenizer = Tokenizer() ... .setInputCols("sentences") ... .setOutputCol("tokens") >>> embeddings = WordEmbeddingsModel() ... .pretrained("embeddings_clinical", "en", "clinical/models") ... .setInputCols(["sentences", "tokens"]) ... .setOutputCol("embeddings") >>> ner_model = MedicalNerModel() ... .pretrained("ner_posology_large", "en", "clinical/models") ... .setInputCols(["sentences", "tokens", "embeddings"]) ... .setOutputCol("ner") >>> ner_converter = NerConverterInternal() ... .setInputCols("sentences", "tokens", "ner") ... .setOutputCol("ner_chunks") >>> chunkerMapperapproach = ChunkMapperApproach() ... .setInputCols(["ner_chunk"]) ... .setOutputCol("mappings") ... .setDictionary("/home/jsl/mappings2.json") ... .setRels(["action"]) >>> sampleData = "The patient was given Warfarina Lusa and amlodipine 10 MG." >>> pipeline = Pipeline().setStages([ ... documenter, ... sentence_detector, ... tokenizer, ... embeddings, ... ner_model, ... ner_converter]) >>> results = pipeline.fit(data).transform(data) >>> results.select("mappings").show(truncate=False) +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |mappings | +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |[{labeled_dependency, 22, 35, Analgesic, {chunk -> 0, relation -> action, confidence -> 0.56995, all_relations -> Antipyretic, entity -> Warfarina Lusa, sentence -> 0}, []}, {labeled_dependency, 41, 50, NONE, {entity -> amlodipine, sentence -> 0, chunk -> 1, confidence -> 0.9989}, []}, {labeled_dependency, 55, 56, NONE, {entity -> MG, sentence -> 0, chunk -> 2, confidence -> 0.9123}, []}]| +-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
- entities1#
- entities2#
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- name = 'NerQuestionGenerator'#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType = 'document'#
- outputCol#
- questionMark#
- questionPronoun#
- skipLPInputColsValidation = True#
- strategyType#
- uid = ''#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setEntities1(entities: list)#
Sets the list of entity types that appear first in the question.
- Parameters:
entities (list) – List of entity types.
- setEntities2(entities)#
Sets the list of entity types that appear second in the question.
- Parameters:
entities (list) – List of entity types.
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- setQuestionMark(value: bool)#
Sets whether we want to add a question mark at the end of the question.
Defaults to False.
- Parameters:
value (bool) – True if we want to add a question mark at the end of the question, False otherwise.
- setQuestionPronoun(pronoun)#
Sets the pronoun to be used in the question.
E.g., ‘When’, ‘Where’, ‘Why’, ‘How’, ‘Who’, ‘What’. Defaults to empty string (“”).
- Parameters:
pronoun (str) – The pronoun to be used.
- setStrategyType(value: str)#
Sets the strategy to be used in the proccess. Either Paired or Combined.
If set to Paired (default), applies a one-vs-one strategy. In this case, the number of chunks in Entity 1 must be aligned with the number of chunks in Entity 2. E.g., if Entity 1 has 3 chunks and Entity 2 has 3 chunks, the first chunk of Entity 1 will be grouped with first chunk of Entity 2, the second with second, third with third, etc.
If set to Combined, applies a one-vs-all strategy. In this case, the number of chunks in Entity 1 don’t need to be the same as the number of chunks in Entity 2, and each chunk in Entity 1 will be grouped with all chunks in Entity 2.
- Parameters:
value (str) – The strategy to be used.
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.