sparknlp_jsl.legal.chunk_classification.deid.document_hashcoder
#
Contains classes for Doc2Chunk.
Module Contents#
Classes#
Converts |
- class LegalDocumentHashCoder#
Bases:
sparknlp_jsl.annotator.DocumentHashCoder
Converts
DOCUMENT
type annotations intoCHUNK
type with the contents of achunkCol
.Chunk text must be contained within input
DOCUMENT
. May be eitherStringType
orArrayType[StringType]
(using setIsArray). Useful for annotators that require a CHUNK type input.For more extended examples on document pre-processing see the Spark NLP Workshop.
Input Annotation types
Output Annotation type
DOCUMENT
CHUNK
- Parameters:
chunkCol – Column that contains the string. Must be part of DOCUMENT
startCol – Column that has a reference of where the chunk begins
startColByTokenIndex – Whether start column is prepended by whitespace tokens
isArray – Whether the chunkCol is an array of strings, by default False
failOnMissing – Whether to fail the job if a chunk is not found within document. Return empty otherwise
lowerCase – Whether to lower case for matching case
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp_jsl.common import * >>> from sparknlp.annotator import * >>> from sparknlp.training import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler().setInputCol("text").setOutputCol("document") >>> chunkAssembler = Doc2Chunk() \ ... .setInputCols("document") \ ... .setChunkCol("target") \ ... .setOutputCol("chunk") \ ... .setIsArray(True) >>> data = spark.createDataFrame([[ ... "Spark NLP is an open-source text processing library for advanced natural language processing.", ... ["Spark NLP", "text processing library", "natural language processing"] ... ]]).toDF("text", "target") >>> pipeline = Pipeline().setStages([documentAssembler, chunkAssembler]).fit(data) >>> result = pipeline.transform(data) >>> result.selectExpr("chunk.result", "chunk.annotatorType").show(truncate=False) +-----------------------------------------------------------------+---------------------+ |result |annotatorType | +-----------------------------------------------------------------+---------------------+ |[Spark NLP, text processing library, natural language processing]|[chunk, chunk, chunk]| +-----------------------------------------------------------------+---------------------+
See also
Chunk2Doc
for converting CHUNK annotations to DOCUMENT
- dateShiftColumn#
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- name = 'DocumentHashCoder'#
- newDateShift#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType = 'chunk'#
- outputCol#
- patientIdColumn#
- rangeDays#
- seed#
- uid = ''#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setDateShiftColumn(value)#
Sets column to be used for hash or predefined shift.
- Parameters:
value (str) – Name of the column to be used
- setIdColumn(value)#
Sets column that contains the string.
- Parameters:
value (str) – Name of the column containing ID
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setNewDateShift(value)#
Sets column that has a reference of where chunk begins.
- Parameters:
value (str) – Name of the reference column
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
Sets the given parameters.
- setPatientIdColumn(value)#
Sets column that contains the string.
- Parameters:
value (str) – Name of the column containing patient ID
- setRangeDays(value)#
Sets the range of dates to be sampled from.
- Parameters:
value (int) – range of days to be sampled by the random generator
- setSeed(value)#
Sets the seed for random number generator.
- Parameters:
value (int) – seed for the random number generator
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.