sparknlp_jsl.finance.sequence_generation.finance_summarizer
#
Module Contents#
Classes#
Base class for Model classes. |
- class FinanceSummarizer(classname='com.johnsnowlabs.finance.sequence_generation.FinanceSummarizer', java_model=None)#
Bases:
sparknlp_jsl.annotator.MedicalSummarizer
Base class for Model classes.
- batchSize#
- configProtoBytes#
- doSample#
- getter_attrs = []#
- ignoreTokenIds#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- maxNewTokens#
- maxTextLength#
- mlFrameworkType#
- name = 'FinanceSummarizer'#
- noRepeatNgramSize#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType#
- outputCol#
- randomSeed#
- refineChunkSize#
- refineMaxAttempts#
- refineSummary#
- refineSummaryTargetLength#
- skipLPInputColsValidation = True#
- stopAtEos#
- task#
- topK#
- uid#
- useCache#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getBatchSize()#
Gets current batch size.
- Returns:
Current batch size
- Return type:
int
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- static loadSavedModel(folder, spark_session, use_cache)#
Loads a locally saved model.
- Parameters:
folder (str) – Folder of the saved model
spark_session (pyspark.sql.SparkSession) – The current SparkSession
use_cache (bool) – The model uses caching to facilitate performance
- Returns:
The restored model
- Return type:
- static pretrained(name='finsum_flant5_finetuned_sec10k', lang='en', remote_loc='finance/models')#
Downloads and loads a pretrained model.
- Parameters:
name (str, optional) – Name of the pretrained model, by default “finsum_flant5_finetuned_sec10k”
lang (str, optional) – Language of the pretrained model, by default “en”
remote_loc (str, optional) – Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
- Returns:
The restored model
- Return type:
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setBatchSize(v)#
Sets batch size.
- Parameters:
v (int) – Batch size
- setConfigProtoBytes(b)#
Sets configProto from tensorflow, serialized into byte array.
- Parameters:
b (List[int]) – ConfigProto from tensorflow, serialized into byte array
- setDoSample(value)#
Sets whether or not to use sampling, use greedy decoding otherwise.
- Parameters:
value (bool) – Whether or not to use sampling; use greedy decoding otherwise
- setForceInputTypeValidation(etfm)#
- setIgnoreTokenIds(value)#
A list of token ids which are ignored in the decoder’s output.
- Parameters:
value (List[int]) – The words to be filtered out
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setMaxNewTokens(value)#
Sets the maximum number of new tokens to be generated
- Parameters:
value (int) – the maximum number of new tokens to be generated
- setMaxTextLength(value)#
Set max text length to process
- Parameters:
value (int) – max text length
- setNoRepeatNgramSize(value)#
Sets size of n-grams that can only occur once.
If set to int > 0, all ngrams of that size can only occur once.
- Parameters:
value (int) – N-gram size can only occur once
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- setRandomSeed(value)#
Set random seed
- Parameters:
value (int) – random seed
- setRefineChunkSize(i)#
How large should refined chunks Be. Should be equal to LLM context window size in tokens. Takes only effect when refineSummary=True
- Parameters:
i (int) – How large should refined chunks Be. Should be equal to LLM context window size in tokens. Takes only effect when refineSummary=True
- setRefineMaxAttempts(i)#
How many times should chunks be re-summarized while they are above SummaryTargetLength before stopping. Takes only effect when refineSummary=True
- Parameters:
i (int) – How many times should chunks be re-summarized while they are above SummaryTargetLength before stopping. Takes only effect when refineSummary=True
- setRefineSummary(b)#
Set true to perform refined summarization at increased computation cost.
- Parameters:
b (bool) – whether to perform refined summaries or not
- setRefineSummaryTargetLength(i)#
Target length of summarizations in Tokens (delimited by whitespace). Takes only effect when refineSummary=True
- Parameters:
i (int) – Target length of summarizations in Tokens (delimited by whitespace). Takes only effect when refineSummary=True
- setStopAtEos(b)#
Stop text generation when the end-of-sentence token is encountered.
- Parameters:
b (bool) – whether to stop at end-of-sentence token or not
- setTopK(value)#
Sets the number of highest probability vocabulary tokens to keep for top-k-filtering.
- Parameters:
value (int) – Number of highest probability vocabulary tokens to keep
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.