sparknlp_jsl.annotator.qa.qa_ner_generator
#
This module is a wrapper for the NerQuestionGenerator class in the Scala API.
Module Contents#
Classes#
Automatically generates questions for NER. |
- class NerQuestionGenerator(classname='com.johnsnowlabs.nlp.annotators.qa.NerQuestionGenerator', java_model=None)#
Bases:
sparknlp_jsl.common.AnnotatorModelInternal
Automatically generates questions for NER.
This annotator takes an NER chunk (obtained by, e.g., NerConverterInternal) and generates a questions based on two entity types, a pronoun and a strategy.
The question is generated in the form of [QUESTIONPRONOUN] [ENTITY1] [ENTITY2] [QUESTIONMARK].
The generated question can be used by `QuestionAnswerer`annotator to find answers to the generated questions.
Input Annotation types
Output Annotation type
CHUNK
LABEL_DEPENDENCY
- Parameters:
pronoun (str) – Pronoun to be used in the question. E.g., ‘When’, ‘Where’, ‘Why’, ‘How’, ‘Who’, ‘What’.
strategyType (str) – Strategy for the proccess. Either Paired or Combined.
questionMark (bool) – Whether to add a question mark at the end of the question.
entities1 (list) – List with the entity types of entities that appear first in the question.
entities2 (list) – List with the entity types of entities that appear second in the question.
Examples
>>> qagenerator = ( ... NerQuestionGenerator() ... .setInputCols(["ner_chunk"]) ... .setOutputCol("question") ... .setQuestionMark(True) ... .setQuestionPronoun("When") ... .setStrategyType("Paired") ... .setEntities1(["PATIENT"]) ... .setEntities2(["ADMISSION"]) ... ) >>> qagenerator..fit(data).transform(data).select("question").show(truncate=False) +--------------------------------------------------------+ |question | +--------------------------------------------------------+ |[{document, 0, 25, When John Smith was admitted ? ...}] | +--------------------------------------------------------+
See also
- entities1#
- entities2#
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- lazyAnnotator#
- name = 'NerQuestionGenerator'#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType = 'document'#
- outputCol#
- questionMark#
- questionPronoun#
- skipLPInputColsValidation = True#
- strategyType#
- uid = ''#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setEntities1(entities: list)#
Sets the list of entity types that appear first in the question.
- Parameters:
entities (list) – List of entity types.
- setEntities2(entities)#
Sets the list of entity types that appear second in the question.
- Parameters:
entities (list) – List of entity types.
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- setQuestionMark(value: bool)#
Sets whether we want to add a question mark at the end of the question.
Defaults to False.
- Parameters:
value (bool) – True if we want to add a question mark at the end of the question, False otherwise.
- setQuestionPronoun(pronoun)#
Sets the pronoun to be used in the question.
E.g., ‘When’, ‘Where’, ‘Why’, ‘How’, ‘Who’, ‘What’. Defaults to empty string (“”).
- Parameters:
pronoun (str) – The pronoun to be used.
- setStrategyType(value: str)#
Sets the strategy to be used in the proccess. Either Paired or Combined.
If set to Paired (default), applies a one-vs-one strategy. In this case, the number of chunks in Entity 1 must be aligned with the number of chunks in Entity 2. E.g., if Entity 1 has 3 chunks and Entity 2 has 3 chunks, the first chunk of Entity 1 will be grouped with first chunk of Entity 2, the second with second, third with third, etc.
If set to Combined, applies a one-vs-all strategy. In this case, the number of chunks in Entity 1 don’t need to be the same as the number of chunks in Entity 2, and each chunk in Entity 1 will be grouped with all chunks in Entity 2.
- Parameters:
value (str) – The strategy to be used.
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.