sparknlp_jsl.annotator.ner.pretrained_zero_shot_ner
#
Module Contents#
Classes#
Zero shot named entity recognition based on RoBertaForQuestionAnswering. |
- class PretrainedZeroShotNER(classname='com.johnsnowlabs.nlp.annotators.ner.PretrainedZeroShotNER', java_model=None)#
Bases:
sparknlp_jsl.common.AnnotatorModelInternal
Zero shot named entity recognition based on RoBertaForQuestionAnswering.
Input Annotation types
Output Annotation type
DOCUMENT
NAMED_ENTITY
- Parameters:
labels –
A list of labels descriving the entities. For example:
>>> ["person", "location"]
predictionThreshold – Minimal confidence score to encode an entity (Default: 0.01f)
Examples
>>> document_assembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> sentence_detector = annotators.SentenceDetector()\ ... .setInputCols(["document"])\ ... .setOutputCol("sentence") >>> pretrained_zero_shot_ner = PretrainedZeroShotNER()\ ... .pretrained()\ ... .setLabels(["person", "location"] ... .setInputCols(["sentence"])\ ... .setOutputCol("entities")\ >>> data = spark.createDataFrame( ... [["My name is Clara, I live in New York and Hellen lives in Paris."]] ... ).toDF("text") >>> Pipeline() \ ... .setStages([document_assembler, sentence_detector, pretrained_zero_shot_ner]) \ ... .fit(data) \ ... .transform(data) \ ... .selectExpr("document", "explode(entities) AS entity")\ ... .select( ... "document.result", ... "entity.result", ... "entity.metadata.word", ... "entity.metadata.confidence")\ ... .show(truncate=False) +-----------------------------------------------------------------+---------+-------+----------+ |result |result |word |confidence| +-----------------------------------------------------------------+---------+-------+----------+ |[My name is Clara, I live in New York and Hellen lives in Paris.]|person |Clara |0.9360068 | |[My name is Clara, I live in New York and Hellen lives in Paris.]|location|New York|0.83294415| |[My name is Clara, I live in New York and Hellen lives in Paris.]|person |Hellen |0.9360068 | |[My name is Clara, I live in New York and Hellen lives in Paris.]|location|Paris |0.5328949 | +-----------------------------------------------------------------+--------+--------+----------+
- getter_attrs = []#
- inputAnnotatorTypes#
- inputCols#
- labels#
- lazyAnnotator#
- name = 'PretrainedZeroShotNER'#
- optionalInputAnnotatorTypes = []#
- outputAnnotatorType = 'named_entity'#
- outputCol#
- predictionThreshold#
- skipLPInputColsValidation = True#
- uid = ''#
- clear(param: pyspark.ml.param.Param) None #
Clears a param from the param map if it has been explicitly set.
- copy(extra: pyspark.ml._typing.ParamMap | None = None) JP #
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters:
extra (dict, optional) – Extra parameters to copy to the new instance
- Returns:
Copy of this instance
- Return type:
JavaParams
- explainParam(param: str | Param) str #
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams() str #
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap #
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters:
extra (dict, optional) – extra param values
- Returns:
merged param map
- Return type:
dict
- getInputCols()#
Gets current column names of input annotations.
- getLabels()#
Returns the list of entities which are recognized.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param: str) Any #
- getOrDefault(param: Param[T]) T
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName: str) Param #
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- hasDefault(param: str | Param[Any]) bool #
Checks whether a param has a default value.
- hasParam(paramName: str) bool #
Tests whether this instance contains a param with a given (string) name.
- inputColsValidation(value)#
- isDefined(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user or has a default value.
- isSet(param: str | Param[Any]) bool #
Checks whether a param is explicitly set by user.
- classmethod load(path: str) RL #
Reads an ML instance from the input path, a shortcut of read().load(path).
- static loadSavedModel(folder, spark_session)#
Loads a locally saved model.
- Parameters:
folder (str) – Folder of the saved model
spark_session (pyspark.sql.SparkSession) – The current SparkSession
- Returns:
The restored model
- Return type:
AutoGGUFModel
- static pretrained(name='zeroshot_ner_deid_subentity_merged_medium', lang='en', remote_loc='clinical/models')#
Download a pre-trained PretrainedZeroShotNER.
- Parameters:
name (str) – Name of the pre-trained model, by default “pretrained_zeroshot_ner”
lang (str) – Language of the pre-trained model, by default “en”
remote_loc (str) – Remote location of the pre-trained model. If None, use the open-source location. Other values are “clinical/models”, “finance/models”, or “legal/models”.
- Returns:
A pre-trained PretrainedZeroShotNER.
- Return type:
- classmethod read()#
Returns an MLReader instance for this class.
- save(path: str) None #
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param: Param, value: Any) None #
Sets a parameter in the embedded param map.
- setForceInputTypeValidation(etfm)#
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters:
*value (List[str]) – Input columns for the annotator
- setLabels(labels: list)#
Set entity descriptions.
- Parameters:
labels (list[str]) – entity descriptions
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters:
value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters:
value (str) – Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters:
paramName (str) – Name of the parameter
- setParams()#
- setPredictionThreshold(threshold: float)#
Sets the minimal confidence score to encode an entity.
- Parameters:
threshold (float) – minimal confidence score to encode an entity (default is 0.1)
- transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame #
Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters:
dataset (
pyspark.sql.DataFrame
) – input datasetparams (dict, optional) – an optional param map that overrides embedded params.
- Returns:
transformed dataset
- Return type:
- write() JavaMLWriter #
Returns an MLWriter instance for this ML instance.