sparknlp_jsl.annotator.medical_llm.medical_vision_llm#

Contains classes for the MedicalVisionLLM.

Module Contents#

Classes#

MedicalVisionLLM

Multimodal annotator to generate text completions with large

class MedicalVisionLLM(classname='com.johnsnowlabs.nlp.annotators.seq2seq.MedicalVisionLLM', java_model=None)#

Bases: sparknlp.annotator.AutoGGUFVisionModel

Multimodal annotator to generate text completions with large language models. It supports ingesting images for captioning.

At the moment only CLIP based models are supported.

If the parameters are not set, the annotator will default to use the parameters provided by the model.

This annotator expects a column of annotator type AnnotationImage for the image and Annotation for the caption. Note that the image bytes in the image annotation need to be raw image bytes without preprocessing. We provide the helper function ImageAssembler.loadImagesAsBytes to load the image bytes from a directory.

Pretrained models can be loaded with pretrained of the companion object:

medical_vision_llm = MedicalVisionLLM.pretrained() \
    .setInputCols(["image", "document"]) \
    .setOutputCol("completions")

Input Annotation types

Output Annotation type

IMAGE, DOCUMENT

DOCUMENT

Parameters:
  • nThreads – Set the number of threads to use during generation

  • nThreadsDraft – Set the number of threads to use during draft generation

  • nThreadsBatch – Set the number of threads to use during batch and prompt processing

  • nThreadsBatchDraft – Set the number of threads to use during batch and prompt processing

  • nCtx – Set the size of the prompt context

  • nBatch – Set the logical batch size for prompt processing (must be >=32 to use BLAS)

  • nUbatch – Set the physical batch size for prompt processing (must be >=32 to use BLAS)

  • nDraft – Set the number of tokens to draft for speculative decoding

  • nChunks – Set the maximal number of chunks to process

  • nSequences – Set the number of sequences to decode

  • pSplit – Set the speculative decoding split probability

  • nGpuLayers – Set the number of layers to store in VRAM (-1 - use default)

  • nGpuLayersDraft – Set the number of layers to store in VRAM for the draft model (-1 - use default)

  • gpuSplitMode – Set how to split the model across GPUs

  • mainGpu – Set the main GPU that is used for scratch and small tensors.

  • tensorSplit – Set how split tensors should be distributed across GPUs

  • grpAttnN – Set the group-attention factor

  • grpAttnW – Set the group-attention width

  • ropeFreqBase – Set the RoPE base frequency, used by NTK-aware scaling

  • ropeFreqScale – Set the RoPE frequency scaling factor, expands context by a factor of 1/N

  • yarnExtFactor – Set the YaRN extrapolation mix factor

  • yarnAttnFactor – Set the YaRN scale sqrt(t) or attention magnitude

  • yarnBetaFast – Set the YaRN low correction dim or beta

  • yarnBetaSlow – Set the YaRN high correction dim or alpha

  • yarnOrigCtx – Set the YaRN original context size of model

  • defragmentationThreshold – Set the KV cache defragmentation threshold

  • numaStrategy – Set optimization strategies that help on some NUMA systems (if available)

  • ropeScalingType – Set the RoPE frequency scaling method, defaults to linear unless specified by the model

  • poolingType – Set the pooling type for embeddings, use model default if unspecified

  • modelDraft – Set the draft model for speculative decoding

  • modelAlias – Set a model alias

  • lookupCacheStaticFilePath – Set path to static lookup cache to use for lookup decoding (not updated by generation)

  • lookupCacheDynamicFilePath – Set path to dynamic lookup cache to use for lookup decoding (updated by generation)

  • embedding – Whether to load model with embedding support

  • flashAttention – Whether to enable Flash Attention

  • inputPrefixBos – Whether to add prefix BOS to user inputs, preceding the –in-prefix string

  • useMmap – Whether to use memory-map model (faster load but may increase pageouts if not using mlock)

  • useMlock – Whether to force the system to keep model in RAM rather than swapping or compressing

  • noKvOffload – Whether to disable KV offload

  • systemPrompt – Set a system prompt to use

  • chatTemplate – The chat template to use

  • inputPrefix – Set the prompt to start generation with

  • inputSuffix – Set a suffix for infilling

  • cachePrompt – Whether to remember the prompt to avoid reprocessing it

  • nPredict – Set the number of tokens to predict

  • topK – Set top-k sampling

  • topP – Set top-p sampling

  • minP – Set min-p sampling

  • tfsZ – Set tail free sampling, parameter z

  • typicalP – Set locally typical sampling, parameter p

  • temperature – Set the temperature

  • dynatempRange – Set the dynamic temperature range

  • dynatempExponent – Set the dynamic temperature exponent

  • repeatLastN – Set the last n tokens to consider for penalties

  • repeatPenalty – Set the penalty of repeated sequences of tokens

  • frequencyPenalty – Set the repetition alpha frequency penalty

  • presencePenalty – Set the repetition alpha presence penalty

  • miroStat – Set MiroStat sampling strategies.

  • mirostatTau – Set the MiroStat target entropy, parameter tau

  • mirostatEta – Set the MiroStat learning rate, parameter eta

  • penalizeNl – Whether to penalize newline tokens

  • nKeep – Set the number of tokens to keep from the initial prompt

  • seed – Set the RNG seed

  • nProbs – Set the amount top tokens probabilities to output if greater than 0.

  • minKeep – Set the amount of tokens the samplers should return at least (0 = disabled)

  • grammar – Set BNF-like grammar to constrain generations

  • penaltyPrompt – Override which part of the prompt is penalized for repetition.

  • ignoreEos – Set whether to ignore end of stream token and continue generating (implies –logit-bias 2-inf)

  • disableTokenIds – Set the token ids to disable in the completion

  • stopStrings – Set strings upon seeing which token generation is stopped

  • samplers – Set which samplers to use for token generation in the given order

  • useChatTemplate – Set whether or not generate should apply a chat template

Notes

To use GPU inference with this annotator, make sure to use the Spark NLP GPU package and set the number of GPU layers with the setNGpuLayers method.

When using larger models, we recommend adjusting GPU usage with setNCtx and setNGpuLayers according to your hardware to avoid out-of-memory errors.

Examples >>> import sparknlp >>> import sparknlp_jsl >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from sparknlp_jsl.annotator import * >>> from pyspark.ml import Pipeline >>> from pyspark.sql.functions import lit >>> documentAssembler = DocumentAssembler() … .setInputCol(“caption”) … .setOutputCol(“caption_document”) >>> imageAssembler = ImageAssembler() … .setInputCol(“image”) … .setOutputCol(“image_assembler”) >>> imagesPath = “IMAGES_PATH” >>> data = ImageAssembler … .loadImagesAsBytes(spark, imagesPath) … .withColumn(“caption”, lit(“Caption this image.”)) >>> model = MedicalVisionLLM.pretrained() … .setInputCols([“caption_document”, “image_assembler”]) … .setOutputCol(“completions”) … .setBatchSize(4) … .setNGpuLayers(99) … .setNCtx(4096) … .setMinKeep(0) … .setMinP(0.05) … .setNPredict(40) … .setNProbs(0) … .setPenalizeNl(False) … .setRepeatLastN(256) … .setRepeatPenalty(1.18) … .setStopStrings([“</s>”, “Llama:”, “User:”]) … .setTemperature(0.05) … .setTfsZ(1) … .setTypicalP(1) … .setTopK(40) … .setTopP(0.95) >>> pipeline = Pipeline().setStages([documentAssembler, imageAssembler, model]) >>> pipeline.fit(data).transform(data) … .selectExpr(“reverse(split(image.origin, ‘/’))[0] as image_name”, “completions.result”) … .show(truncate = False) +—————–+———————————————————————————————————————————————————————————————-+ |image_name |result | +-----------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ |palace.JPEG |[ The image depicts a large, ornate room with high ceilings and beautifully decorated walls. There are several chairs placed throughout the space, some of which have cushions] | |egyptian_cat.jpeg|[ The image features two cats lying on a pink surface, possibly a bed or sofa. One cat is positioned towards the left side of the scene and appears to be sleeping while holding] | |hippopotamus.JPEG|[ A large brown hippo is swimming in a body of water, possibly an aquarium. The hippo appears to be enjoying its time in the water and seems relaxed as it floats] | |hen.JPEG |[ The image features a large chicken standing next to several baby chickens. In total, there are five birds in the scene: one adult and four young ones. They appear to be gathered together] | |ostrich.JPEG |[ The image features a large, long-necked bird standing in the grass. It appears to be an ostrich or similar species with its head held high and looking around. In addition to] | |junco.JPEG |[ A small bird with a black head and white chest is standing on the snow. It appears to be looking at something, possibly food or another animal in its vicinity. The scene takes place out] | |bluetick.jpg |[ A dog with a red collar is sitting on the floor, looking at something. The dog appears to be staring into the distance or focusing its attention on an object in front of it.] | |chihuahua.jpg |[ A small brown dog wearing a sweater is sitting on the floor. The dog appears to be looking at something, possibly its owner or another animal in the room. It seems comfortable and relaxed]| |tractor.JPEG |[ A man is sitting in the driver’s seat of a green tractor, which has yellow wheels and tires. The tractor appears to be parked on top of an empty field with] | |ox.JPEG |[ A large bull with horns is standing in a grassy field.] | +—————–+———————————————————————————————————————————————————————————————-+——-

batchSize#
cachePrompt#
chatTemplate#
defragmentationThreshold#
disableLog#
disableTokenIds#
dynamicTemperatureExponent#
dynamicTemperatureRange#
embedding#
flashAttention#
frequencyPenalty#
getter_attrs = []#
gpuSplitMode#
grammar#
ignoreEos#
inputAnnotatorTypes#
inputCols#
inputPrefix#
inputSuffix#
lazyAnnotator#
logVerbosity#
mainGpu#
minKeep#
minP#
miroStat#
miroStatEta#
miroStatTau#
modelAlias#
modelDraft#
nBatch#
nCtx#
nDraft#
nGpuLayers#
nGpuLayersDraft#
nKeep#
nPredict#
nProbs#
nThreads#
nThreadsBatch#
nUbatch#
name = 'MedicalVisionLLM'#
noKvOffload#
numaStrategy#
optionalInputAnnotatorTypes = []#
outputAnnotatorType = 'document'#
outputCol#
penalizeNl#
penaltyPrompt#
poolingType#
presencePenalty#
repeatLastN#
repeatPenalty#
ropeFreqBase#
ropeFreqScale#
ropeScalingType#
samplers#
seed#
stopStrings#
systemPrompt#
temperature#
tfsZ#
topK#
topP#
typicalP#
uid = ''#
useChatTemplate#
useMlock#
useMmap#
yarnAttnFactor#
yarnBetaFast#
yarnBetaSlow#
yarnExtFactor#
yarnOrigCtx#
clear(param: pyspark.ml.param.Param) None#

Clears a param from the param map if it has been explicitly set.

copy(extra: pyspark.ml._typing.ParamMap | None = None) JP#

Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.

Parameters:

extra (dict, optional) – Extra parameters to copy to the new instance

Returns:

Copy of this instance

Return type:

JavaParams

explainParam(param: str | Param) str#

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams() str#

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap(extra: pyspark.ml._typing.ParamMap | None = None) pyspark.ml._typing.ParamMap#

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

Parameters:

extra (dict, optional) – extra param values

Returns:

merged param map

Return type:

dict

getBatchSize()#

Gets current batch size.

Returns:

Current batch size

Return type:

int

getInputCols()#

Gets current column names of input annotations.

getLazyAnnotator()#

Gets whether Annotator should be evaluated lazily in a RecursivePipeline.

getMetadata()#

Gets the metadata of the model

getOrDefault(param: str) Any#
getOrDefault(param: Param[T]) T

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.

getOutputCol()#

Gets output column name of annotations.

getParam(paramName: str) Param#

Gets a param by its name.

getParamValue(paramName)#

Gets the value of a parameter.

Parameters:

paramName (str) – Name of the parameter

getSystemPrompt()#

Get the system prompt.

hasDefault(param: str | Param[Any]) bool#

Checks whether a param has a default value.

hasParam(paramName: str) bool#

Tests whether this instance contains a param with a given (string) name.

inputColsValidation(value)#
isDefined(param: str | Param[Any]) bool#

Checks whether a param is explicitly set by user or has a default value.

isSet(param: str | Param[Any]) bool#

Checks whether a param is explicitly set by user.

classmethod load(path: str) RL#

Reads an ML instance from the input path, a shortcut of read().load(path).

static loadSavedModel(modelPath, mmprojPath, spark_session)#

Loads a locally saved modelPath.

Parameters:
  • modelPath (str) – Path to the modelPath file

  • mmprojPath (str) – Path to the mmprojPath file

  • spark_session (pyspark.sql.SparkSession) – The current SparkSession

Returns:

The restored modelPath

Return type:

MedicalVisionLLM

static pretrained(name='jsl_meds_vlm_3b_q4_v1', lang='en', remote_loc='clinical/models')#

Downloads and loads a pretrained model.

Parameters:
  • name (str, optional) – Name of the pretrained model, by default “jsl_meds_vlm_3b_q4_v1”

  • lang (str, optional) – Language of the pretrained model, by default “en”

  • remote_loc (str, optional) – Optional remote address of the resource, by default “clinical/models”. Will use Spark NLPs repositories otherwise.

Returns:

The restored model

Return type:

AutoGGUFVisionModel

classmethod read()#

Returns an MLReader instance for this class.

save(path: str) None#

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param: Param, value: Any) None#

Sets a parameter in the embedded param map.

setBatchSize(v)#

Sets batch size.

Parameters:

v (int) – Batch size

setCachePrompt(cachePrompt: bool)#

Whether to remember the prompt to avoid reprocessing it

setChatTemplate(chatTemplate: str)#

The chat template to use

setDefragmentationThreshold(defragmentationThreshold: float)#

Set the KV cache defragmentation threshold

setDisableLog(disableLog: bool)#

Whether to disable logging

setDisableTokenIds(disableTokenIds: List[int])#

Set the token ids to disable in the completion

setDynamicTemperatureExponent(dynamicTemperatureExponent: float)#

Set the dynamic temperature exponent

setDynamicTemperatureRange(dynamicTemperatureRange: float)#

Set the dynamic temperature range

setFlashAttention(flashAttention: bool)#

Whether to enable Flash Attention

setFrequencyPenalty(frequencyPenalty: float)#

Set the repetition alpha frequency penalty

setGpuSplitMode(gpuSplitMode: str)#

Set how to split the model across GPUs

setGrammar(grammar: str)#

Set BNF-like grammar to constrain generations

setIgnoreEos(ignoreEos: bool)#

Set whether to ignore end of stream token and continue generating (implies –logit-bias 2-inf)

setInputCols(*value)#

Sets column names of input annotations.

Parameters:

*value (List[str]) – Input columns for the annotator

setInputPrefix(inputPrefix: str)#

Set the prompt to start generation with

setInputSuffix(inputSuffix: str)#

Set a suffix for infilling

setLazyAnnotator(value)#

Sets whether Annotator should be evaluated lazily in a RecursivePipeline.

Parameters:

value (bool) – Whether Annotator should be evaluated lazily in a RecursivePipeline

setLogVerbosity(logVerbosity: int)#

Set the log verbosity level

setMainGpu(mainGpu: int)#

Set the main GPU that is used for scratch and small tensors.

setMinKeep(minKeep: int)#

Set the amount of tokens the samplers should return at least (0 = disabled)

setMinP(minP: float)#

Set min-p sampling

setMiroStat(miroStat: str)#

Set MiroStat sampling strategies.

setMiroStatEta(miroStatEta: float)#

Set the MiroStat learning rate, parameter eta

setMiroStatTau(miroStatTau: float)#

Set the MiroStat target entropy, parameter tau

setModelAlias(modelAlias: str)#

Set a model alias

setModelDraft(modelDraft: str)#

Set the draft model for speculative decoding

setNBatch(nBatch: int)#

Set the logical batch size for prompt processing (must be >=32 to use BLAS)

setNCtx(nCtx: int)#

Set the size of the prompt context

setNDraft(nDraft: int)#

Set the number of tokens to draft for speculative decoding

setNGpuLayers(nGpuLayers: int)#

Set the number of layers to store in VRAM (-1 - use default)

setNGpuLayersDraft(nGpuLayersDraft: int)#

Set the number of layers to store in VRAM for the draft model (-1 - use default)

setNKeep(nKeep: int)#

Set the number of tokens to keep from the initial prompt

setNParallel(nParallel: int)#

Sets the number of parallel processes for decoding. This is an alias for setBatchSize.

setNPredict(nPredict: int)#

Set the number of tokens to predict

setNProbs(nProbs: int)#

Set the amount top tokens probabilities to output if greater than 0.

setNThreads(nThreads: int)#

Set the number of threads to use during generation

setNThreadsBatch(nThreadsBatch: int)#

Set the number of threads to use during batch and prompt processing

setNUbatch(nUbatch: int)#

Set the physical batch size for prompt processing (must be >=32 to use BLAS)

setNoKvOffload(noKvOffload: bool)#

Whether to disable KV offload

setNumaStrategy(numaStrategy: str)#

Set optimization strategies that help on some NUMA systems (if available)

Possible values:

  • DISABLED: No NUMA optimizations

  • DISTRIBUTE: spread execution evenly over all

  • ISOLATE: only spawn threads on CPUs on the node that execution started on

  • NUMA_CTL: use the CPU map provided by numactl

  • MIRROR: Mirrors the model across NUMA nodes

setOutputCol(value)#

Sets output column name of annotations.

Parameters:

value (str) – Name of output column

setParamValue(paramName)#

Sets the value of a parameter.

Parameters:

paramName (str) – Name of the parameter

setParams()#
setPenalizeNl(penalizeNl: bool)#

Whether to penalize newline tokens

setPenaltyPrompt(penaltyPrompt: str)#

Override which part of the prompt is penalized for repetition.

setPoolingType(poolingType: str)#

Set the pooling type for embeddings, use model default if unspecified

Possible values:

  • MEAN: Mean Pooling

  • CLS: CLS Pooling

  • LAST: Last token pooling

  • RANK: For reranked models

setPresencePenalty(presencePenalty: float)#

Set the repetition alpha presence penalty

setRepeatLastN(repeatLastN: int)#

Set the last n tokens to consider for penalties

setRepeatPenalty(repeatPenalty: float)#

Set the penalty of repeated sequences of tokens

setRopeFreqBase(ropeFreqBase: float)#

Set the RoPE base frequency, used by NTK-aware scaling

setRopeFreqScale(ropeFreqScale: float)#

Set the RoPE frequency scaling factor, expands context by a factor of 1/N

setRopeScalingType(ropeScalingType: str)#

Set the RoPE frequency scaling method, defaults to linear unless specified by the model.

Possible values:

  • NONE: Don’t use any scaling

  • LINEAR: Linear scaling

  • YARN: YaRN RoPE scaling

setSamplers(samplers: List[str])#

Set which samplers to use for token generation in the given order

setSeed(seed: int)#

Set the RNG seed

setStopStrings(stopStrings: List[str])#

Set strings upon seeing which token generation is stopped

setSystemPrompt(systemPrompt)#

Set a system prompt to use.

setTemperature(temperature: float)#

Set the temperature

setTfsZ(tfsZ: float)#

Set tail free sampling, parameter z

setTokenBias(tokenBias: Dict[str, float])#

Set token id bias

setTokenIdBias(tokenIdBias: Dict[int, float])#

Set token id bias

setTopK(topK: int)#

Set top-k sampling

setTopP(topP: float)#

Set top-p sampling

setTypicalP(typicalP: float)#

Set locally typical sampling, parameter p

setUseChatTemplate(useChatTemplate: bool)#

Set whether generate should apply a chat template

setUseMlock(useMlock: bool)#

Whether to force the system to keep model in RAM rather than swapping or compressing

setUseMmap(useMmap: bool)#

Whether to use memory-map model (faster load but may increase pageouts if not using mlock)

setYarnAttnFactor(yarnAttnFactor: float)#

Set the YaRN scale sqrt(t) or attention magnitude

setYarnBetaFast(yarnBetaFast: float)#

Set the YaRN low correction dim or beta

setYarnBetaSlow(yarnBetaSlow: float)#

Set the YaRN high correction dim or alpha

setYarnExtFactor(yarnExtFactor: float)#

Set the YaRN extrapolation mix factor

setYarnOrigCtx(yarnOrigCtx: int)#

Set the YaRN original context size of model

transform(dataset: pyspark.sql.dataframe.DataFrame, params: pyspark.ml._typing.ParamMap | None = None) pyspark.sql.dataframe.DataFrame#

Transforms the input dataset with optional parameters.

New in version 1.3.0.

Parameters:
  • dataset (pyspark.sql.DataFrame) – input dataset

  • params (dict, optional) – an optional param map that overrides embedded params.

Returns:

transformed dataset

Return type:

pyspark.sql.DataFrame

write() JavaMLWriter#

Returns an MLWriter instance for this ML instance.