sparknlp.base.TokenAssembler

class sparknlp.base.TokenAssembler[source]

Bases: sparknlp.internal.AnnotatorTransformer, sparknlp.common.AnnotatorProperties

This transformer reconstructs a DOCUMENT type annotation from tokens, usually after these have been normalized, lemmatized, normalized, spell checked, etc, in order to use this document annotation in further annotators. Requires DOCUMENT and TOKEN type annotations as input.

For more extended examples on document pre-processing see the Spark NLP Workshop.

Input Annotation types

Output Annotation type

DOCUMENT, TOKEN

DOCUMENT

Parameters
preservePosition

Whether to preserve the actual position of the tokens or reduce them to one space

Examples

>>> import sparknlp
>>> from sparknlp.base import *
>>> from sparknlp.annotator import *
>>> from pyspark.ml import Pipeline

First, the text is tokenized and cleaned

>>> documentAssembler = DocumentAssembler() \
...    .setInputCol("text") \
...    .setOutputCol("document")
>>> sentenceDetector = SentenceDetector() \
...    .setInputCols(["document"]) \
...    .setOutputCol("sentences")
>>> tokenizer = Tokenizer() \
...    .setInputCols(["sentences"]) \
...    .setOutputCol("token")
>>> normalizer = Normalizer() \
...    .setInputCols(["token"]) \
...    .setOutputCol("normalized") \
...    .setLowercase(False)
>>> stopwordsCleaner = StopWordsCleaner() \
...    .setInputCols(["normalized"]) \
...    .setOutputCol("cleanTokens") \
...    .setCaseSensitive(False)

Then the TokenAssembler turns the cleaned tokens into a DOCUMENT type structure.

>>> tokenAssembler = TokenAssembler() \
...    .setInputCols(["sentences", "cleanTokens"]) \
...    .setOutputCol("cleanText")
>>> data = spark.createDataFrame([["Spark NLP is an open-source text processing library for advanced natural language processing."]]) \
...    .toDF("text")
>>> pipeline = Pipeline().setStages([
...     documentAssembler,
...     sentenceDetector,
...     tokenizer,
...     normalizer,
...     stopwordsCleaner,
...     tokenAssembler
... ]).fit(data)
>>> result = pipeline.transform(data)
>>> result.select("cleanText").show(truncate=False)
+---------------------------------------------------------------------------------------------------------------------------+
|cleanText                                                                                                                  |
+---------------------------------------------------------------------------------------------------------------------------+
|[[document, 0, 80, Spark NLP opensource text processing library advanced natural language processing, [sentence -> 0], []]]|
+---------------------------------------------------------------------------------------------------------------------------+

Methods

__init__()

clear(param)

Clears a param from the param map if it has been explicitly set.

copy([extra])

Creates a copy of this instance with the same uid and some extra params.

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap([extra])

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

getInputCols()

Gets current column names of input annotations.

getLazyAnnotator()

Gets whether Annotator should be evaluated lazily in a RecursivePipeline.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value.

getOutputCol()

Gets output column name of annotations.

getParam(paramName)

Gets a param by its name.

getParamValue(paramName)

Gets the value of a parameter.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

load(path)

Reads an ML instance from the input path, a shortcut of read().load(path).

read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of 'write().save(path)'.

set(param, value)

Sets a parameter in the embedded param map.

setInputCols(*value)

Sets column names of input annotations.

setLazyAnnotator(value)

Sets whether Annotator should be evaluated lazily in a RecursivePipeline.

setOutputCol(value)

Sets output column name of annotations.

setParamValue(paramName)

Sets the value of a parameter.

setParams()

setPreservePosition(value)

Sets whether to preserve the actual position of the tokens or reduce them to one space.

transform(dataset[, params])

Transforms the input dataset with optional parameters.

write()

Returns an MLWriter instance for this ML instance.

Attributes

getter_attrs

inputCols

lazyAnnotator

name

outputCol

params

Returns all params ordered by name.

preservePosition

clear(param)

Clears a param from the param map if it has been explicitly set.

copy(extra=None)

Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.

Parameters

extra – Extra parameters to copy to the new instance

Returns

Copy of this instance

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap(extra=None)

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

Parameters

extra – extra param values

Returns

merged param map

getInputCols()

Gets current column names of input annotations.

getLazyAnnotator()

Gets whether Annotator should be evaluated lazily in a RecursivePipeline.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.

getOutputCol()

Gets output column name of annotations.

getParam(paramName)

Gets a param by its name.

getParamValue(paramName)

Gets the value of a parameter.

Parameters
paramNamestr

Name of the parameter

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

classmethod load(path)

Reads an ML instance from the input path, a shortcut of read().load(path).

property params

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.

classmethod read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param, value)

Sets a parameter in the embedded param map.

setInputCols(*value)

Sets column names of input annotations.

Parameters
*valuestr

Input columns for the annotator

setLazyAnnotator(value)

Sets whether Annotator should be evaluated lazily in a RecursivePipeline.

Parameters
valuebool

Whether Annotator should be evaluated lazily in a RecursivePipeline

setOutputCol(value)

Sets output column name of annotations.

Parameters
valuestr

Name of output column

setParamValue(paramName)

Sets the value of a parameter.

Parameters
paramNamestr

Name of the parameter

setPreservePosition(value)[source]

Sets whether to preserve the actual position of the tokens or reduce them to one space.

Parameters
valuestr

Name of the Id Column

transform(dataset, params=None)

Transforms the input dataset with optional parameters.

Parameters
  • dataset – input dataset, which is an instance of pyspark.sql.DataFrame

  • params – an optional param map that overrides embedded params.

Returns

transformed dataset

New in version 1.3.0.

uid

A unique id for the object.

write()

Returns an MLWriter instance for this ML instance.