sparknlp.base.RecursivePipelineModel

class sparknlp.base.RecursivePipelineModel(pipeline_model)[source]

Bases: pyspark.ml.pipeline.PipelineModel

Fitted RecursivePipeline.

Behaves the same as a Spark PipelineModel does. Not intended to be initialized by itself. To create a RecursivePipelineModel please fit data to a RecursivePipeline.

Methods

__init__(pipeline_model)

clear(param)

Clears a param from the param map if it has been explicitly set.

copy([extra])

Creates a copy of this instance.

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap([extra])

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value.

getParam(paramName)

Gets a param by its name.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

load(path)

Reads an ML instance from the input path, a shortcut of read().load(path).

read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of 'write().save(path)'.

set(param, value)

Sets a parameter in the embedded param map.

transform(dataset[, params])

Transforms the input dataset with optional parameters.

write()

Returns an MLWriter instance for this ML instance.

Attributes

params

Returns all params ordered by name.

clear(param)

Clears a param from the param map if it has been explicitly set.

copy(extra=None)

Creates a copy of this instance.

Parameters

extra – extra parameters

Returns

new instance

New in version 1.4.0.

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap(extra=None)

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

Parameters

extra – extra param values

Returns

merged param map

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.

getParam(paramName)

Gets a param by its name.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

classmethod load(path)

Reads an ML instance from the input path, a shortcut of read().load(path).

property params

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.

classmethod read()

Returns an MLReader instance for this class.

New in version 2.0.0.

save(path)

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param, value)

Sets a parameter in the embedded param map.

transform(dataset, params=None)

Transforms the input dataset with optional parameters.

Parameters
  • dataset – input dataset, which is an instance of pyspark.sql.DataFrame

  • params – an optional param map that overrides embedded params.

Returns

transformed dataset

New in version 1.3.0.

uid

A unique id for the object.

write()

Returns an MLWriter instance for this ML instance.

New in version 2.0.0.