sparknlp.annotator.XlmRoBertaSentenceEmbeddings#
- class sparknlp.annotator.XlmRoBertaSentenceEmbeddings(classname='com.johnsnowlabs.nlp.embeddings.XlmRoBertaSentenceEmbeddings', java_model=None)[source]#
Bases:
sparknlp.common.AnnotatorModel
,sparknlp.common.HasEmbeddingsProperties
,sparknlp.common.HasCaseSensitiveProperties
,sparknlp.common.HasStorageRef
,sparknlp.common.HasBatchedAnnotate
Sentence-level embeddings using XLM-RoBERTa. The XLM-RoBERTa model was proposed in Unsupervised Cross-lingual Representation Learning at Scale by Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov. It is based on Facebook’s RoBERTa model released in 2019. It is a large multi-lingual language model, trained on 2.5TB of filtered CommonCrawl data. Pretrained models can be loaded with pretrained of the companion object:
Pretrained models can be loaded with
pretrained()
of the companion object:>>> embeddings = XlmRoBertaSentenceEmbeddings.pretrained() \ ... .setInputCols(["sentence"]) \ ... .setOutputCol("sentence_embeddings")
The default model is
"sent_xlm_roberta_base"
, if no name is provided.For available pretrained models please see the Models Hub.
Input Annotation types
Output Annotation type
DOCUMENT
SENTENCE_EMBEDDINGS
- Parameters
- batchSize
Size of every batch, by default 8
- caseSensitive
Whether to ignore case in tokens for embeddings matching, by default False
- dimension
Number of embedding dimensions, by default 768
- maxSentenceLength
Max sentence length to process, by default 128
- configProtoBytes
ConfigProto from tensorflow, serialized into byte array.
References
Unsupervised Cross-lingual Representation Learning at Scale
Paper abstract:
This paper shows that pretraining multilingual language models at scale leads to significant performance gains for a wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one hundred languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly outperforms multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +13.8% average accuracy on XNLI, +12.3% average F1 score on MLQA, and +2.1% average F1 score on NER. XLM-R performs particularly well on low-resource languages, improving 11.8% in XNLI accuracy for Swahili and 9.2% for Urdu over the previous XLM model. We also present a detailed empirical evaluation of the key factors that are required to achieve these gains, including the trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high and low resource languages at scale. Finally, we show, for the first time, the possibility of multilingual modeling without sacrificing per-language performance; XLM-Ris very competitive with strong monolingual models on the GLUE and XNLI benchmarks. We will make XLM-R code, data, and models publicly available.
Examples
>>> import sparknlp >>> from sparknlp.base import * >>> from sparknlp.annotator import * >>> from pyspark.ml import Pipeline >>> documentAssembler = DocumentAssembler() \ ... .setInputCol("text") \ ... .setOutputCol("document") >>> sentence = SentenceDetector() \ ... .setInputCols(["document"]) \ ... .setOutputCol("sentence") >>> embeddings = XlmRoBertaSentenceEmbeddings.pretrained() \ ... .setInputCols(["sentence"]) \ ... .setOutputCol("sentence_embeddings") >>> embeddingsFinisher = EmbeddingsFinisher() \ ... .setInputCols(["sentence_embeddings"]) \ ... .setOutputCols("finished_embeddings") \ ... .setOutputAsVector(True) >>> pipeline = Pipeline().setStages([ ... documentAssembler, ... sentence, ... embeddings, ... embeddingsFinisher ... ]) >>> data = spark.createDataFrame([["John loves apples. Mary loves oranges. John loves Mary."]]).toDF("text") >>> result = pipeline.fit(data).transform(data) >>> result.selectExpr("explode(finished_embeddings) as result").show(5, 80) +--------------------------------------------------------------------------------+ | result| +--------------------------------------------------------------------------------+ |[-0.8951074481010437,0.13753940165042877,0.3108254075050354,-1.65693199634552...| |[-0.6180210709571838,-0.12179657071828842,-0.191165953874588,-1.4497021436691...| |[-0.822715163230896,0.7568016648292542,-0.1165061742067337,-1.59048593044281,...| +--------------------------------------------------------------------------------+
Methods
__init__
([classname, java_model])Initialize this instance with a Java model object.
clear
(param)Clears a param from the param map if it has been explicitly set.
copy
([extra])Creates a copy of this instance with the same uid and some extra params.
explainParam
(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap
([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Gets current batch size.
Gets whether to ignore case in tokens for embeddings matching.
Gets embeddings dimension.
Gets current column names of input annotations.
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
getOrDefault
(param)Gets the value of a param in the user-supplied param map or its default value.
Gets output column name of annotations.
getParam
(paramName)Gets a param by its name.
getParamValue
(paramName)Gets the value of a parameter.
Gets unique reference name for identification.
hasDefault
(param)Checks whether a param has a default value.
hasParam
(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined
(param)Checks whether a param is explicitly set by user or has a default value.
isSet
(param)Checks whether a param is explicitly set by user.
load
(path)Reads an ML instance from the input path, a shortcut of read().load(path).
loadSavedModel
(folder, spark_session)Loads a locally saved model.
pretrained
([name, lang, remote_loc])Downloads and loads a pretrained model.
read
()Returns an MLReader instance for this class.
save
(path)Save this ML instance to the given path, a shortcut of 'write().save(path)'.
set
(param, value)Sets a parameter in the embedded param map.
setBatchSize
(v)Sets batch size.
setCaseSensitive
(value)Sets whether to ignore case in tokens for embeddings matching.
Sets configProto from tensorflow, serialized into byte array.
setDimension
(value)Sets embeddings dimension.
setInputCols
(*value)Sets column names of input annotations.
setLazyAnnotator
(value)Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
setMaxSentenceLength
(value)Sets max sentence length to process.
setOutputCol
(value)Sets output column name of annotations.
setParamValue
(paramName)Sets the value of a parameter.
setParams
()setStorageRef
(value)Sets unique reference name for identification.
transform
(dataset[, params])Transforms the input dataset with optional parameters.
write
()Returns an MLWriter instance for this ML instance.
Attributes
batchSize
caseSensitive
configProtoBytes
dimension
getter_attrs
inputCols
lazyAnnotator
maxSentenceLength
name
outputCol
Returns all params ordered by name.
storageRef
- clear(param)#
Clears a param from the param map if it has been explicitly set.
- copy(extra=None)#
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
- Parameters
extra – Extra parameters to copy to the new instance
- Returns
Copy of this instance
- explainParam(param)#
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams()#
Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra=None)#
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
extra – extra param values
- Returns
merged param map
- getBatchSize()#
Gets current batch size.
- Returns
- int
Current batch size
- getCaseSensitive()#
Gets whether to ignore case in tokens for embeddings matching.
- Returns
- bool
Whether to ignore case in tokens for embeddings matching
- getDimension()#
Gets embeddings dimension.
- getInputCols()#
Gets current column names of input annotations.
- getLazyAnnotator()#
Gets whether Annotator should be evaluated lazily in a RecursivePipeline.
- getOrDefault(param)#
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getOutputCol()#
Gets output column name of annotations.
- getParam(paramName)#
Gets a param by its name.
- getParamValue(paramName)#
Gets the value of a parameter.
- Parameters
- paramNamestr
Name of the parameter
- getStorageRef()#
Gets unique reference name for identification.
- Returns
- str
Unique reference name for identification
- hasDefault(param)#
Checks whether a param has a default value.
- hasParam(paramName)#
Tests whether this instance contains a param with a given (string) name.
- isDefined(param)#
Checks whether a param is explicitly set by user or has a default value.
- isSet(param)#
Checks whether a param is explicitly set by user.
- classmethod load(path)#
Reads an ML instance from the input path, a shortcut of read().load(path).
- static loadSavedModel(folder, spark_session)[source]#
Loads a locally saved model.
- Parameters
- folderstr
Folder of the saved model
- spark_sessionpyspark.sql.SparkSession
The current SparkSession
- Returns
- BertSentenceEmbeddings
The restored model
- property params#
Returns all params ordered by name. The default implementation uses
dir()
to get all attributes of typeParam
.
- static pretrained(name='sent_xlm_roberta_base', lang='xx', remote_loc=None)[source]#
Downloads and loads a pretrained model.
- Parameters
- namestr, optional
Name of the pretrained model, by default “sent_xlm_roberta_base”
- langstr, optional
Language of the pretrained model, by default “xx”
- remote_locstr, optional
Optional remote address of the resource, by default None. Will use Spark NLPs repositories otherwise.
- Returns
- XlmRoBertaSentenceEmbeddings
The restored model
- classmethod read()#
Returns an MLReader instance for this class.
- save(path)#
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
- set(param, value)#
Sets a parameter in the embedded param map.
- setBatchSize(v)#
Sets batch size.
- Parameters
- vint
Batch size
- setCaseSensitive(value)#
Sets whether to ignore case in tokens for embeddings matching.
- Parameters
- valuebool
Whether to ignore case in tokens for embeddings matching
- setConfigProtoBytes(b)[source]#
Sets configProto from tensorflow, serialized into byte array.
- Parameters
- bList[int]
ConfigProto from tensorflow, serialized into byte array
- setDimension(value)#
Sets embeddings dimension.
- Parameters
- valueint
Embeddings dimension
- setInputCols(*value)#
Sets column names of input annotations.
- Parameters
- *valuestr
Input columns for the annotator
- setLazyAnnotator(value)#
Sets whether Annotator should be evaluated lazily in a RecursivePipeline.
- Parameters
- valuebool
Whether Annotator should be evaluated lazily in a RecursivePipeline
- setMaxSentenceLength(value)[source]#
Sets max sentence length to process.
- Parameters
- valueint
Max sentence length to process
- setOutputCol(value)#
Sets output column name of annotations.
- Parameters
- valuestr
Name of output column
- setParamValue(paramName)#
Sets the value of a parameter.
- Parameters
- paramNamestr
Name of the parameter
- setStorageRef(value)#
Sets unique reference name for identification.
- Parameters
- valuestr
Unique reference name for identification
- transform(dataset, params=None)#
Transforms the input dataset with optional parameters.
- Parameters
dataset – input dataset, which is an instance of
pyspark.sql.DataFrame
params – an optional param map that overrides embedded params.
- Returns
transformed dataset
New in version 1.3.0.
- uid#
A unique id for the object.
- write()#
Returns an MLWriter instance for this ML instance.