sparknlp.annotator.Token2Chunk#

class sparknlp.annotator.Token2Chunk[source]#

Bases: sparknlp.common.AnnotatorModel

Converts TOKEN type Annotations to CHUNK type.

This can be useful if a entities have been already extracted as TOKEN and following annotators require CHUNK types.

Input Annotation types

Output Annotation type

TOKEN

CHUNK

Parameters
None

Examples

>>> import sparknlp
>>> from sparknlp.base import *
>>> from sparknlp.annotator import *
>>> from pyspark.ml import Pipeline
>>> documentAssembler = DocumentAssembler() \
...     .setInputCol("text") \
...     .setOutputCol("document")
>>> tokenizer = Tokenizer() \
...     .setInputCols(["document"]) \
...     .setOutputCol("token")
>>> token2chunk = Token2Chunk() \
...     .setInputCols(["token"]) \
...     .setOutputCol("chunk")
>>> pipeline = Pipeline().setStages([
...     documentAssembler,
...     tokenizer,
...     token2chunk
... ])
>>> data = spark.createDataFrame([["One Two Three Four"]]).toDF("text")
>>> result = pipeline.fit(data).transform(data)
>>> result.selectExpr("explode(chunk) as result").show(truncate=False)
+------------------------------------------+
|result                                    |
+------------------------------------------+
|[chunk, 0, 2, One, [sentence -> 0], []]   |
|[chunk, 4, 6, Two, [sentence -> 0], []]   |
|[chunk, 8, 12, Three, [sentence -> 0], []]|
|[chunk, 14, 17, Four, [sentence -> 0], []]|
+------------------------------------------+

Methods

__init__()

Initialize this instance with a Java model object.

clear(param)

Clears a param from the param map if it has been explicitly set.

copy([extra])

Creates a copy of this instance with the same uid and some extra params.

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap([extra])

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

getInputCols()

Gets current column names of input annotations.

getLazyAnnotator()

Gets whether Annotator should be evaluated lazily in a RecursivePipeline.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value.

getOutputCol()

Gets output column name of annotations.

getParam(paramName)

Gets a param by its name.

getParamValue(paramName)

Gets the value of a parameter.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

load(path)

Reads an ML instance from the input path, a shortcut of read().load(path).

read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of 'write().save(path)'.

set(param, value)

Sets a parameter in the embedded param map.

setInputCols(*value)

Sets column names of input annotations.

setLazyAnnotator(value)

Sets whether Annotator should be evaluated lazily in a RecursivePipeline.

setOutputCol(value)

Sets output column name of annotations.

setParamValue(paramName)

Sets the value of a parameter.

setParams()

transform(dataset[, params])

Transforms the input dataset with optional parameters.

write()

Returns an MLWriter instance for this ML instance.

Attributes

getter_attrs

inputCols

lazyAnnotator

name

outputCol

params

Returns all params ordered by name.

clear(param)#

Clears a param from the param map if it has been explicitly set.

copy(extra=None)#

Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.

Parameters

extra – Extra parameters to copy to the new instance

Returns

Copy of this instance

explainParam(param)#

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()#

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap(extra=None)#

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

Parameters

extra – extra param values

Returns

merged param map

getInputCols()#

Gets current column names of input annotations.

getLazyAnnotator()#

Gets whether Annotator should be evaluated lazily in a RecursivePipeline.

getOrDefault(param)#

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.

getOutputCol()#

Gets output column name of annotations.

getParam(paramName)#

Gets a param by its name.

getParamValue(paramName)#

Gets the value of a parameter.

Parameters
paramNamestr

Name of the parameter

hasDefault(param)#

Checks whether a param has a default value.

hasParam(paramName)#

Tests whether this instance contains a param with a given (string) name.

isDefined(param)#

Checks whether a param is explicitly set by user or has a default value.

isSet(param)#

Checks whether a param is explicitly set by user.

classmethod load(path)#

Reads an ML instance from the input path, a shortcut of read().load(path).

property params#

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.

classmethod read()#

Returns an MLReader instance for this class.

save(path)#

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param, value)#

Sets a parameter in the embedded param map.

setInputCols(*value)#

Sets column names of input annotations.

Parameters
*valuestr

Input columns for the annotator

setLazyAnnotator(value)#

Sets whether Annotator should be evaluated lazily in a RecursivePipeline.

Parameters
valuebool

Whether Annotator should be evaluated lazily in a RecursivePipeline

setOutputCol(value)#

Sets output column name of annotations.

Parameters
valuestr

Name of output column

setParamValue(paramName)#

Sets the value of a parameter.

Parameters
paramNamestr

Name of the parameter

transform(dataset, params=None)#

Transforms the input dataset with optional parameters.

Parameters
  • dataset – input dataset, which is an instance of pyspark.sql.DataFrame

  • params – an optional param map that overrides embedded params.

Returns

transformed dataset

New in version 1.3.0.

uid#

A unique id for the object.

write()#

Returns an MLWriter instance for this ML instance.