Packages

class LongformerEmbeddings extends AnnotatorModel[LongformerEmbeddings] with HasBatchedAnnotate[LongformerEmbeddings] with WriteTensorflowModel with HasEmbeddingsProperties with HasStorageRef with HasCaseSensitiveProperties

Longformer is a transformer model for long documents. The Longformer model was presented in Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan. longformer-base-4096 is a BERT-like model started from the RoBERTa checkpoint and pretrained for MLM on long documents. It supports sequences of length up to 4,096.

Pretrained models can be loaded with pretrained of the companion object:

val embeddings = LongformerEmbeddings.pretrained()
  .setInputCols("document", "token")
  .setOutputCol("embeddings")

The default model is "longformer_base_4096", if no name is provided. For available pretrained models please see the Models Hub.

For some examples of usage, see LongformerEmbeddingsTestSpec. Models from the HuggingFace 🤗 Transformers library are compatible with Spark NLP 🚀. The Spark NLP Workshop example shows how to import them https://github.com/JohnSnowLabs/spark-nlp/discussions/5669.

Paper Abstract:

Transformer-based models are unable to process long sequences due to their self-attention operation, which scales quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or longer. Longformer's attention mechanism is a drop-in replacement for the standard self-attention and combines a local windowed attention with a task motivated global attention. Following prior work on long-sequence transformers, we evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and enwik8. In contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks. Our pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art results on WikiHop and TriviaQA. We finally introduce the Longformer-Encoder-Decoder (LED), a Longformer variant for supporting long document generative sequence-to-sequence tasks, and demonstrate its effectiveness on the arXiv summarization dataset.

The original code can be found here https://github.com/allenai/longformer.

Example

import spark.implicits._
import com.johnsnowlabs.nlp.base._
import com.johnsnowlabs.nlp.annotator._
import org.apache.spark.ml.Pipeline

val documentAssembler = new DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

val tokenizer = new Tokenizer()
  .setInputCols(Array("document"))
  .setOutputCol("token")

val embeddings = LongformerEmbeddings.pretrained()
  .setInputCols("document", "token")
  .setOutputCol("embeddings")
  .setCaseSensitive(true)

val embeddingsFinisher = new EmbeddingsFinisher()
  .setInputCols("embeddings")
  .setOutputCols("finished_embeddings")
  .setOutputAsVector(true)
  .setCleanAnnotations(false)

val pipeline = new Pipeline()
  .setStages(Array(
    documentAssembler,
    tokenizer,
    embeddings,
    embeddingsFinisher
  ))

val data = Seq("This is a sentence.").toDF("text")
val result = pipeline.fit(data).transform(data)

result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
+--------------------------------------------------------------------------------+
|                                                                          result|
+--------------------------------------------------------------------------------+
|[0.18792399764060974,-0.14591649174690247,0.20547787845134735,0.1468472778797...|
|[0.22845706343650818,0.18073144555091858,0.09725798666477203,-0.0417917296290...|
|[0.07037967443466187,-0.14801117777824402,-0.03603338822722435,-0.17893412709...|
|[-0.08734266459941864,0.2486150562763214,-0.009067727252840996,-0.24408400058...|
|[0.22409197688102722,-0.4312366545200348,0.1401449590921402,0.356410235166549...|
+--------------------------------------------------------------------------------+
See also

LongformerForTokenClassification for Longformer embeddings with a token classification layer on top

Annotators Main Page for a list of transformer based embeddings

Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. LongformerEmbeddings
  2. HasCaseSensitiveProperties
  3. HasStorageRef
  4. HasEmbeddingsProperties
  5. WriteTensorflowModel
  6. HasBatchedAnnotate
  7. AnnotatorModel
  8. CanBeLazy
  9. RawAnnotator
  10. HasOutputAnnotationCol
  11. HasInputAnnotationCols
  12. HasOutputAnnotatorType
  13. ParamsAndFeaturesWritable
  14. HasFeatures
  15. DefaultParamsWritable
  16. MLWritable
  17. Model
  18. Transformer
  19. PipelineStage
  20. Logging
  21. Params
  22. Serializable
  23. Serializable
  24. Identifiable
  25. AnyRef
  26. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new LongformerEmbeddings()

    Annotator reference id.

    Annotator reference id. Used to identify elements in metadata or to refer to this annotator type

  2. new LongformerEmbeddings(uid: String)

Type Members

  1. type AnnotationContent = Seq[Row]

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    internal types to show Rows as a relevant StructType Should be deleted once Spark releases UserDefinedTypes to @developerAPI

    Attributes
    protected
    Definition Classes
    AnnotatorModel
  2. type AnnotatorType = String
    Definition Classes
    HasOutputAnnotatorType

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. final def $[T](param: Param[T]): T
    Attributes
    protected
    Definition Classes
    Params
  4. def $$[T](feature: StructFeature[T]): T
    Attributes
    protected
    Definition Classes
    HasFeatures
  5. def $$[K, V](feature: MapFeature[K, V]): Map[K, V]
    Attributes
    protected
    Definition Classes
    HasFeatures
  6. def $$[T](feature: SetFeature[T]): Set[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  7. def $$[T](feature: ArrayFeature[T]): Array[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  8. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  9. def _transform(dataset: Dataset[_], recursivePipeline: Option[PipelineModel]): DataFrame
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  10. def afterAnnotate(dataset: DataFrame): DataFrame
    Attributes
    protected
    Definition Classes
    LongformerEmbeddingsAnnotatorModel
  11. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  12. def batchAnnotate(batchedAnnotations: Seq[Array[Annotation]]): Seq[Seq[Annotation]]

    takes a document and annotations and produces new annotations of this annotator's annotation type

    takes a document and annotations and produces new annotations of this annotator's annotation type

    batchedAnnotations

    Annotations that correspond to inputAnnotationCols generated by previous annotators if any

    returns

    any number of annotations processed for every input annotation. Not necessary one to one relationship

    Definition Classes
    LongformerEmbeddingsHasBatchedAnnotate
  13. def batchProcess(rows: Iterator[_]): Iterator[Row]
    Definition Classes
    HasBatchedAnnotate
  14. val batchSize: IntParam

    Size of every batch (Default depends on model).

    Size of every batch (Default depends on model).

    Definition Classes
    HasBatchedAnnotate
  15. def beforeAnnotate(dataset: Dataset[_]): Dataset[_]
    Attributes
    protected
    Definition Classes
    AnnotatorModel
  16. val caseSensitive: BooleanParam

    Whether to ignore case in index lookups (Default depends on model)

    Whether to ignore case in index lookups (Default depends on model)

    Definition Classes
    HasCaseSensitiveProperties
  17. final def checkSchema(schema: StructType, inputAnnotatorType: String): Boolean
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  18. final def clear(param: Param[_]): LongformerEmbeddings.this.type
    Definition Classes
    Params
  19. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  20. val configProtoBytes: IntArrayParam

    ConfigProto from tensorflow, serialized into byte array.

    ConfigProto from tensorflow, serialized into byte array. Get with config_proto.SerializeToString()

  21. def copy(extra: ParamMap): LongformerEmbeddings

    requirement for annotators copies

    requirement for annotators copies

    Definition Classes
    RawAnnotator → Model → Transformer → PipelineStage → Params
  22. def copyValues[T <: Params](to: T, extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  23. def createDatabaseConnection(database: Name): RocksDBConnection
    Definition Classes
    HasStorageRef
  24. final def defaultCopy[T <: Params](extra: ParamMap): T
    Attributes
    protected
    Definition Classes
    Params
  25. val dimension: IntParam

    Number of embedding dimensions (Default depends on model)

    Number of embedding dimensions (Default depends on model)

    Definition Classes
    HasEmbeddingsProperties
  26. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  27. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  28. def explainParam(param: Param[_]): String
    Definition Classes
    Params
  29. def explainParams(): String
    Definition Classes
    Params
  30. def extraValidate(structType: StructType): Boolean
    Attributes
    protected
    Definition Classes
    RawAnnotator
  31. def extraValidateMsg: String

    Override for additional custom schema checks

    Override for additional custom schema checks

    Attributes
    protected
    Definition Classes
    RawAnnotator
  32. final def extractParamMap(): ParamMap
    Definition Classes
    Params
  33. final def extractParamMap(extra: ParamMap): ParamMap
    Definition Classes
    Params
  34. val features: ArrayBuffer[Feature[_, _, _]]
    Definition Classes
    HasFeatures
  35. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  36. def get[T](feature: StructFeature[T]): Option[T]
    Attributes
    protected
    Definition Classes
    HasFeatures
  37. def get[K, V](feature: MapFeature[K, V]): Option[Map[K, V]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  38. def get[T](feature: SetFeature[T]): Option[Set[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  39. def get[T](feature: ArrayFeature[T]): Option[Array[T]]
    Attributes
    protected
    Definition Classes
    HasFeatures
  40. final def get[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  41. def getBatchSize: Int

    Size of every batch.

    Size of every batch.

    Definition Classes
    HasBatchedAnnotate
  42. def getCaseSensitive: Boolean

    Definition Classes
    HasCaseSensitiveProperties
  43. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  44. def getConfigProtoBytes: Option[Array[Byte]]

  45. final def getDefault[T](param: Param[T]): Option[T]
    Definition Classes
    Params
  46. def getDimension: Int

    Definition Classes
    HasEmbeddingsProperties
  47. def getInputCols: Array[String]

    returns

    input annotations columns currently used

    Definition Classes
    HasInputAnnotationCols
  48. def getLazyAnnotator: Boolean
    Definition Classes
    CanBeLazy
  49. def getMaxSentenceLength: Int

  50. def getModelIfNotSet: TensorflowRoBerta

  51. final def getOrDefault[T](param: Param[T]): T
    Definition Classes
    Params
  52. final def getOutputCol: String

    Gets annotation column name going to generate

    Gets annotation column name going to generate

    Definition Classes
    HasOutputAnnotationCol
  53. def getParam(paramName: String): Param[Any]
    Definition Classes
    Params
  54. def getSignatures: Option[Map[String, String]]

  55. def getStorageRef: String
    Definition Classes
    HasStorageRef
  56. final def hasDefault[T](param: Param[T]): Boolean
    Definition Classes
    Params
  57. def hasParam(paramName: String): Boolean
    Definition Classes
    Params
  58. def hasParent: Boolean
    Definition Classes
    Model
  59. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  60. def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  61. def initializeLogIfNecessary(isInterpreter: Boolean): Unit
    Attributes
    protected
    Definition Classes
    Logging
  62. val inputAnnotatorTypes: Array[String]

    Input Annotator Types: DOCUMENT, TOKEN

    Input Annotator Types: DOCUMENT, TOKEN

    Definition Classes
    LongformerEmbeddingsHasInputAnnotationCols
  63. final val inputCols: StringArrayParam

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    columns that contain annotations necessary to run this annotator AnnotatorType is used both as input and output columns if not specified

    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  64. final def isDefined(param: Param[_]): Boolean
    Definition Classes
    Params
  65. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  66. final def isSet(param: Param[_]): Boolean
    Definition Classes
    Params
  67. def isTraceEnabled(): Boolean
    Attributes
    protected
    Definition Classes
    Logging
  68. val lazyAnnotator: BooleanParam
    Definition Classes
    CanBeLazy
  69. def log: Logger
    Attributes
    protected
    Definition Classes
    Logging
  70. def logDebug(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  71. def logDebug(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  72. def logError(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  73. def logError(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  74. def logInfo(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  75. def logInfo(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  76. def logName: String
    Attributes
    protected
    Definition Classes
    Logging
  77. def logTrace(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  78. def logTrace(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  79. def logWarning(msg: ⇒ String, throwable: Throwable): Unit
    Attributes
    protected
    Definition Classes
    Logging
  80. def logWarning(msg: ⇒ String): Unit
    Attributes
    protected
    Definition Classes
    Logging
  81. val maxSentenceLength: IntParam

    Max sentence length to process (Default: 128)

  82. val merges: MapFeature[(String, String), Int]

    Holding merges.txt coming from Longformer model

  83. def msgHelper(schema: StructType): String
    Attributes
    protected
    Definition Classes
    HasInputAnnotationCols
  84. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  85. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  86. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  87. def onWrite(path: String, spark: SparkSession): Unit
  88. val optionalInputAnnotatorTypes: Array[String]
    Definition Classes
    HasInputAnnotationCols
  89. val outputAnnotatorType: AnnotatorType

    Output Annotator Types: WORD_EMBEDDINGS

    Output Annotator Types: WORD_EMBEDDINGS

    Definition Classes
    LongformerEmbeddingsHasOutputAnnotatorType
  90. final val outputCol: Param[String]
    Attributes
    protected
    Definition Classes
    HasOutputAnnotationCol
  91. def padTokenId: Int
  92. lazy val params: Array[Param[_]]
    Definition Classes
    Params
  93. var parent: Estimator[LongformerEmbeddings]
    Definition Classes
    Model
  94. def save(path: String): Unit
    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  95. def sentenceEndTokenId: Int
  96. def sentenceStartTokenId: Int
  97. def set[T](feature: StructFeature[T], value: T): LongformerEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  98. def set[K, V](feature: MapFeature[K, V], value: Map[K, V]): LongformerEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  99. def set[T](feature: SetFeature[T], value: Set[T]): LongformerEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  100. def set[T](feature: ArrayFeature[T], value: Array[T]): LongformerEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  101. final def set(paramPair: ParamPair[_]): LongformerEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    Params
  102. final def set(param: String, value: Any): LongformerEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    Params
  103. final def set[T](param: Param[T], value: T): LongformerEmbeddings.this.type
    Definition Classes
    Params
  104. def setBatchSize(size: Int): LongformerEmbeddings.this.type

    Size of every batch.

    Size of every batch.

    Definition Classes
    HasBatchedAnnotate
  105. def setCaseSensitive(value: Boolean): LongformerEmbeddings.this.type

    Whether to lowercase tokens or not

    Whether to lowercase tokens or not

    Definition Classes
    LongformerEmbeddingsHasCaseSensitiveProperties
  106. def setConfigProtoBytes(bytes: Array[Int]): LongformerEmbeddings.this.type

  107. def setDefault[T](feature: StructFeature[T], value: () ⇒ T): LongformerEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  108. def setDefault[K, V](feature: MapFeature[K, V], value: () ⇒ Map[K, V]): LongformerEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  109. def setDefault[T](feature: SetFeature[T], value: () ⇒ Set[T]): LongformerEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  110. def setDefault[T](feature: ArrayFeature[T], value: () ⇒ Array[T]): LongformerEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    HasFeatures
  111. final def setDefault(paramPairs: ParamPair[_]*): LongformerEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    Params
  112. final def setDefault[T](param: Param[T], value: T): LongformerEmbeddings.this.type
    Attributes
    protected
    Definition Classes
    Params
  113. def setDimension(value: Int): LongformerEmbeddings.this.type

    Set Embeddings dimensions for the RoBERTa model.

    Set Embeddings dimensions for the RoBERTa model. Only possible to set this when the first time is saved dimension is not changeable, it comes from RoBERTa config file.

    Definition Classes
    LongformerEmbeddingsHasEmbeddingsProperties
  114. final def setInputCols(value: String*): LongformerEmbeddings.this.type
    Definition Classes
    HasInputAnnotationCols
  115. def setInputCols(value: Array[String]): LongformerEmbeddings.this.type

    Overrides required annotators column if different than default

    Overrides required annotators column if different than default

    Definition Classes
    HasInputAnnotationCols
  116. def setLazyAnnotator(value: Boolean): LongformerEmbeddings.this.type
    Definition Classes
    CanBeLazy
  117. def setMaxSentenceLength(value: Int): LongformerEmbeddings.this.type

  118. def setMerges(value: Map[(String, String), Int]): LongformerEmbeddings.this.type

  119. def setModelIfNotSet(spark: SparkSession, tensorflowWrapper: TensorflowWrapper): LongformerEmbeddings

  120. final def setOutputCol(value: String): LongformerEmbeddings.this.type

    Overrides annotation column name when transforming

    Overrides annotation column name when transforming

    Definition Classes
    HasOutputAnnotationCol
  121. def setParent(parent: Estimator[LongformerEmbeddings]): LongformerEmbeddings
    Definition Classes
    Model
  122. def setSignatures(value: Map[String, String]): LongformerEmbeddings.this.type

  123. def setStorageRef(value: String): LongformerEmbeddings.this.type
    Definition Classes
    HasStorageRef
  124. def setVocabulary(value: Map[String, Int]): LongformerEmbeddings.this.type

  125. val signatures: MapFeature[String, String]

    It contains TF model signatures for the laded saved model

  126. val storageRef: Param[String]

    Unique identifier for storage (Default: this.uid)

    Unique identifier for storage (Default: this.uid)

    Definition Classes
    HasStorageRef
  127. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  128. def toString(): String
    Definition Classes
    Identifiable → AnyRef → Any
  129. def tokenizeWithAlignment(tokens: Seq[TokenizedSentence]): Seq[WordpieceTokenizedSentence]
  130. final def transform(dataset: Dataset[_]): DataFrame

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    Given requirements are met, this applies ML transformation within a Pipeline or stand-alone Output annotation will be generated as a new column, previous annotations are still available separately metadata is built at schema level to record annotations structural information outside its content

    dataset

    Dataset[Row]

    Definition Classes
    AnnotatorModel → Transformer
  131. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  132. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame
    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  133. final def transformSchema(schema: StructType): StructType

    requirement for pipeline transformation validation.

    requirement for pipeline transformation validation. It is called on fit()

    Definition Classes
    RawAnnotator → PipelineStage
  134. def transformSchema(schema: StructType, logging: Boolean): StructType
    Attributes
    protected
    Definition Classes
    PipelineStage
    Annotations
    @DeveloperApi()
  135. val uid: String
    Definition Classes
    LongformerEmbeddings → Identifiable
  136. def validate(schema: StructType): Boolean

    takes a Dataset and checks to see if all the required annotation types are present.

    takes a Dataset and checks to see if all the required annotation types are present.

    schema

    to be validated

    returns

    True if all the required types are present, else false

    Attributes
    protected
    Definition Classes
    RawAnnotator
  137. def validateStorageRef(dataset: Dataset[_], inputCols: Array[String], annotatorType: String): Unit
    Definition Classes
    HasStorageRef
  138. val vocabulary: MapFeature[String, Int]

    Vocabulary used to encode the words to ids with bpeTokenizer.encode

  139. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  140. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  141. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... ) @native()
  142. def wrapColumnMetadata(col: Column): Column
    Attributes
    protected
    Definition Classes
    RawAnnotator
  143. def wrapEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
    Attributes
    protected
    Definition Classes
    HasEmbeddingsProperties
  144. def wrapSentenceEmbeddingsMetadata(col: Column, embeddingsDim: Int, embeddingsRef: Option[String] = None): Column
    Attributes
    protected
    Definition Classes
    HasEmbeddingsProperties
  145. def write: MLWriter
    Definition Classes
    ParamsAndFeaturesWritable → DefaultParamsWritable → MLWritable
  146. def writeTensorflowHub(path: String, tfPath: String, spark: SparkSession, suffix: String = "_use"): Unit
    Definition Classes
    WriteTensorflowModel
  147. def writeTensorflowModel(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None): Unit
    Definition Classes
    WriteTensorflowModel
  148. def writeTensorflowModelV2(path: String, spark: SparkSession, tensorflow: TensorflowWrapper, suffix: String, filename: String, configProtoBytes: Option[Array[Byte]] = None, savedSignatures: Option[Map[String, String]] = None): Unit
    Definition Classes
    WriteTensorflowModel

Inherited from HasStorageRef

Inherited from HasEmbeddingsProperties

Inherited from WriteTensorflowModel

Inherited from CanBeLazy

Inherited from HasOutputAnnotationCol

Inherited from HasInputAnnotationCols

Inherited from HasOutputAnnotatorType

Inherited from ParamsAndFeaturesWritable

Inherited from HasFeatures

Inherited from DefaultParamsWritable

Inherited from MLWritable

Inherited from Model[LongformerEmbeddings]

Inherited from Transformer

Inherited from PipelineStage

Inherited from Logging

Inherited from Params

Inherited from Serializable

Inherited from Serializable

Inherited from Identifiable

Inherited from AnyRef

Inherited from Any

Parameters

A list of (hyper-)parameter keys this annotator can take. Users can set and get the parameter values through setters and getters, respectively.

Annotator types

Required input and expected output annotator types

Members

Parameter setters

Parameter getters