Spanish RoBERTa Embeddings (from MMG)

Description

Pretrained RoBERTa Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. mlm-spanish-roberta-base is a Spanish model orginally trained by MMG.

Download

How to use

documentAssembler = DocumentAssembler() \
    .setInputCol("text") \
    .setOutputCol("document")

tokenizer = Tokenizer() \
    .setInputCols("document") \
    .setOutputCol("token")
  
embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_mlm_spanish_roberta_base","es") \
    .setInputCols(["document", "token"]) \
    .setOutputCol("embeddings")
    
pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])

data = spark.createDataFrame([["Me encanta chispa nlp"]]).toDF("text")

result = pipeline.fit(data).transform(data)
val documentAssembler = new DocumentAssembler() 
      .setInputCol("text") 
      .setOutputCol("document")
 
val tokenizer = new Tokenizer() 
    .setInputCols(Array("document"))
    .setOutputCol("token")

val embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_mlm_spanish_roberta_base","es") 
    .setInputCols(Array("document", "token")) 
    .setOutputCol("embeddings")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))

val data = Seq("Me encanta chispa nlp").toDF("text")

val result = pipeline.fit(data).transform(data)

Model Information

Model Name: roberta_embeddings_mlm_spanish_roberta_base
Compatibility: Spark NLP 3.4.2+
License: Open Source
Edition: Official
Input Labels: [sentence, token]
Output Labels: [bert]
Language: es
Size: 473.7 MB
Case sensitive: true

References

  • https://huggingface.co/MMG/mlm-spanish-roberta-base
  • https://github.com/dccuchile/GLUES