Named Entity Recognition - CoNLL03 RoBERTa (ner_conll_roberta_large)

Description

ner_conll_roberta_large is a Named Entity Recognition (or NER) model, meaning it annotates text to find features like the names of people, places, and organizations. It was trained on the CoNLL 2003 text corpus. This NER model does not read words directly but instead reads word embeddings, which represent words as points such that more semantically similar words are closer together.ner_conll_roberta_large model is trained withroberta_large word embeddings, so be sure to use the same embeddings in the pipeline.

Predicted Entities

PER, LOC, ORG, MISC

Live Demo Open in Colab Download Copy S3 URI

How to use

document_assembler = DocumentAssembler() \
.setInputCol('text') \
.setOutputCol('document')

tokenizer = Tokenizer() \
.setInputCols(['document']) \
.setOutputCol('token')

embeddings = RoBertaEmbeddings\
.pretrained('roberta_large', 'en')\
.setInputCols(["token", "document"])\
.setOutputCol("embeddings")

ner_model = NerDLModel.pretrained('ner_conll_roberta_large', 'en') \
.setInputCols(['document', 'token', 'embeddings']) \
.setOutputCol('ner')

ner_converter = NerConverter() \
.setInputCols(['document', 'token', 'ner']) \
.setOutputCol('entities')

pipeline = Pipeline(stages=[
document_assembler, 
tokenizer,
embeddings,
ner_model,
ner_converter
])

example = spark.createDataFrame([['My name is John!']]).toDF("text")
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler() 
.setInputCol("text") 
.setOutputCol("document")

val tokenizer = Tokenizer() 
.setInputCols("document") 
.setOutputCol("token")

val embeddings = RoBertaEmbeddings.pretrained("roberta_large", "en")
.setInputCols("document", "token") 
.setOutputCol("embeddings")

val ner_model = NerDLModel.pretrained("ner_conll_roberta_large", "en") 
.setInputCols("document"', "token", "embeddings") 
.setOutputCol("ner")

val ner_converter = NerConverter() 
.setInputCols("document", "token", "ner") 
.setOutputCol("entities")

val pipeline = new Pipeline().setStages(Array(document_assembler, tokenizer, embeddings, ner_model, ner_converter))

val example = Seq.empty["My name is John!"].toDS.toDF("text")

val result = pipeline.fit(example).transform(example)
import nlu

text = ["My name is John!"]

ner_df = nlu.load('en.ner.ner_conll_roberta_large').predict(text, output_level='token')

Model Information

Model Name: ner_conll_roberta_large
Type: ner
Compatibility: Spark NLP 3.2.0+
License: Open Source
Edition: Official
Input Labels: [sentence, token, embeddings]
Output Labels: [ner]
Language: en

Data Source

https://www.clips.uantwerpen.be/conll2003/ner/

Benchmarking

Test:

precision    recall  f1-score   support

B-LOC       0.93      0.92      0.92      1668
I-ORG       0.87      0.91      0.89       835
I-MISC       0.57      0.77      0.66       216
I-LOC       0.89      0.86      0.88       257
I-PER       0.97      0.98      0.98      1156
B-MISC       0.76      0.85      0.80       702
B-ORG       0.89      0.90      0.90      1661
B-PER       0.96      0.95      0.95      1617

micro avg       0.90      0.92      0.91      8112
macro avg       0.86      0.89      0.87      8112
weighted avg       0.90      0.92      0.91      8112

processed 46435 tokens with 5648 phrases; found: 5719 phrases; correct: 5109.
accuracy:  91.80%; (non-O)
accuracy:  97.87%; precision:  89.33%; recall:  90.46%; FB1:  89.89
LOC: precision:  92.41%; recall:  91.19%; FB1:  91.79  1646
MISC: precision:  73.83%; recall:  83.19%; FB1:  78.23  791
ORG: precision:  87.43%; recall:  88.74%; FB1:  88.08  1686
PER: precision:  95.86%; recall:  94.62%; FB1:  95.24  1596


Dev:

precision    recall  f1-score   support

B-LOC       0.97      0.96      0.96      1837
I-ORG       0.95      0.92      0.93       751
I-MISC       0.87      0.89      0.88       346
I-LOC       0.94      0.93      0.94       257
I-PER       0.98      0.98      0.98      1307
B-MISC       0.87      0.93      0.90       922
B-ORG       0.94      0.94      0.94      1341
B-PER       0.97      0.98      0.97      1842

micro avg       0.95      0.95      0.95      8603
macro avg       0.94      0.94      0.94      8603
weighted avg       0.95      0.95      0.95      8603

processed 51362 tokens with 5942 phrases; found: 5996 phrases; correct: 5633.
accuracy:  95.18%; (non-O)
accuracy:  98.95%; precision:  93.95%; recall:  94.80%; FB1:  94.37
LOC: precision:  96.75%; recall:  95.65%; FB1:  96.19  1816
MISC: precision:  85.61%; recall:  91.65%; FB1:  88.53  987
ORG: precision:  92.14%; recall:  92.62%; FB1:  92.38  1348
PER: precision:  96.96%; recall:  97.12%; FB1:  97.04  1845