Recognize Entities DL Pipeline for Dutch - Small

Description

The entity_recognizer_sm is a pretrained pipeline that we can use to process text with a simple pipeline that performs basic processing steps. It performs most of the common text processing tasks on your dataframe

Open in Colab Download

How to use


from sparknlp.pretrained import PretrainedPipelinein
pipeline = PretrainedPipeline('entity_recognizer_sm', lang = 'nl')
annotations =  pipeline.fullAnnotate(""Hallo van John Snow Labs! "")[0]
annotations.keys()


val pipeline = new PretrainedPipeline("entity_recognizer_sm", lang = "nl")
val result = pipeline.fullAnnotate("Hallo van John Snow Labs! ")(0)



import nlu
text = [""Hallo van John Snow Labs! ""]
result_df = nlu.load('nl.ner').predict(text)
result_df
    

Results

|    | document                       | sentence                      | token                                     | embeddings                   | ner                                   | entities            |
|---:|:-------------------------------|:------------------------------|:------------------------------------------|:-----------------------------|:--------------------------------------|:--------------------|
|  0 | ['Hallo van John Snow Labs! '] | ['Hallo van John Snow Labs!'] | ['Hallo', 'van', 'John', 'Snow', 'Labs!'] | [[0.3653799891471863,.,...]] | ['O', 'O', 'B-PER', 'I-PER', 'I-PER'] | ['John Snow Labs!'] |

Model Information

Model Name: entity_recognizer_sm
Type: pipeline
Compatibility: Spark NLP 3.0.0+
License: Open Source
Edition: Official
Language: nl