Part of Speech for Yoruba

Description

A Part of Speech classifier predicts a grammatical label for every token in the input text. Implemented with an averaged perceptron architecture.

Predicted Entities

  • ADP
  • NOUN
  • DET
  • VERB
  • CCONJ
  • PUNCT
  • PRON
  • ADJ
  • AUX
  • SCONJ
  • ADV
  • NUM
  • PART
  • PROPN
  • X

Live Demo Open in Colab Download

How to use


document_assembler = DocumentAssembler()
  .setInputCol("text")
  .setOutputCol("document")

sentence_detector = SentenceDetector()
  .setInputCols(["document"])
  .setOutputCol("sentence")

pos = PerceptronModel.pretrained("pos_ud_ytb", "yo")
  .setInputCols(["document", "token"])
  .setOutputCol("pos")

pipeline = Pipeline(stages=[
  document_assembler,
  sentence_detector,
  posTagger
])

example = spark.createDataFrame(pd.DataFrame({'text': ["Kaabo lati awọn laanu snown Johan! "]}))

result = pipeline.fit(example).transform(example)



val document_assembler = DocumentAssembler()
        .setInputCol("text")
        .setOutputCol("document")

val sentence_detector = SentenceDetector()
        .setInputCols(["document"])
.setOutputCol("sentence")

val pos = PerceptronModel.pretrained("pos_ud_ytb", "yo")
        .setInputCols(Array("document", "token"))
        .setOutputCol("pos")

val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, pos))

val result = pipeline.fit(Seq.empty["Kaabo lati awọn laanu snown Johan! "].toDS.toDF("text")).transform(data)


import nlu
text = [""Kaabo lati awọn laanu snown Johan! ""]
token_df = nlu.load('yo.pos').predict(text)
token_df
    

Results

   token    pos
               
0  Kaabo   NOUN
1   lati   VERB
2   awọn   NOUN
3  laanu    ADP
4  snown   VERB
5  Johan  PROPN
6      !  PUNCT

Model Information

Model Name: pos_ud_ytb
Compatibility: Spark NLP 3.0.0+
License: Open Source
Edition: Official
Input Labels: [document, token]
Output Labels: [pos]
Language: yo