Description
A Part of Speech classifier predicts a grammatical label for every token in the input text. Implemented with an averaged perceptron architecture
.
Predicted Entities
- NOUN
- ADJ
- VERB
- ADV
- CCONJ
- PUNCT
- SCONJ
- PRON
- PROPN
- AUX
- ADP
- NUM
- X
- SYM
- INTJ
Live Demo Open in Colab Download
How to use
document_assembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
sentence_detector = SentenceDetector()
.setInputCols(["document"])
.setOutputCol("sentence")
pos = PerceptronModel.pretrained("pos_ud_tdt", "fi")
.setInputCols(["document", "token"])
.setOutputCol("pos")
pipeline = Pipeline(stages=[
document_assembler,
sentence_detector,
posTagger
])
example = spark.createDataFrame(pd.DataFrame({'text': ["Hei John Snow Labs! "]}))
result = pipeline.fit(example).transform(example)
val document_assembler = DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")
val sentence_detector = SentenceDetector()
.setInputCols(["document"])
.setOutputCol("sentence")
val pos = PerceptronModel.pretrained("pos_ud_tdt", "fi")
.setInputCols(Array("document", "token"))
.setOutputCol("pos")
val pipeline = new Pipeline().setStages(Array(document_assembler, sentence_detector, pos))
val result = pipeline.fit(Seq.empty["Hei John Snow Labs! "].toDS.toDF("text")).transform(data)
import nlu
text = [""Hei John Snow Labs! ""]
token_df = nlu.load('fi.pos').predict(text)
token_df
Results
token pos
0 Hei INTJ
1 John PROPN
2 Snow PROPN
3 Labs PROPN
4 ! PUNCT
Model Information
Model Name: | pos_ud_tdt |
Compatibility: | Spark NLP 3.0.0+ |
License: | Open Source |
Edition: | Official |
Input Labels: | [document, token] |
Output Labels: | [pos] |
Language: | fi |