End-to-End (E2E) and data-driven NLG Challenge

Description

Natural language generation plays a critical role for Conversational Agents as it has a significant impact on a user’s impression of the system. This shared task focuses on recent end-to-end (E2E), data-driven NLG methods, which jointly learn sentence planning and surface realization from non-aligned data, e.g. (Wen et al., 2015; Mei et al., 2016; Dusek and Jurcicek, 2016; Lampouras and Vlachos, 2016), etc.

So far, E2E NLG approaches were limited to small, de-lexicalized data sets, e.g. BAGEL, SF Hotels/ Restaurants, or RoboCup. In this shared challenge, we will provide a new crowd-sourced data set of 50k instances in the restaurant domain, as described in (Novikova, Lemon, and Rieser, 2016). Each instance consists of a dialogue act-based meaning representation (MR) and up to 5 references in natural language. In contrast to previously used data, our data set includes additional challenges, such as open vocabulary, complex syntactic structures, and diverse discourse phenomena.

Predicted Entities

name[Bibimbap House],name[Wildwood],name[Clowns],name[Cotto],near[Burger King],name[The Dumpling Tree],name[The Vaults],name[The Golden Palace],near[Crowne Plaza Hotel],name[The Rice Boat],customer rating[high],near[Avalon],name[Alimentum],near[The Bakers],name[The Waterman],near[Ranch],name[The Olive Grove],name[The Wrestlers],name[The Eagle],eatType[restaurant],near[All Bar One],customer rating[low],near[Café Sicilia],near[Yippee Noodle Bar],food[Indian],eatType[pub],name[Green Man],name[Strada],near[Café Adriatic],name[Loch Fyne],eatType[coffee shop],customer rating[5 out of 5],near[Express by Holiday Inn],food[French],name[The Mill],food[Japanese],name[Travellers Rest Beefeater],name[The Plough],name[Cocum],near[The Six Bells],name[The Phoenix],priceRange[cheap],name[Midsummer House],near[Rainbow Vegetarian Café],near[The Rice Boat],customer rating[3 out of 5],customer rating[1 out of 5],name[The Cricketers],area[riverside],priceRange[£20-25],name[Blue Spice],priceRange[moderate],priceRange[less than £20],priceRange[high],name[Giraffe],name[The Golden Curry],customer rating[average],name[The Twenty Two],name[Aromi],food[Fast food],name[Browns Cambridge],near[Café Rouge],area[city centre],familyFriendly[no],food[Chinese],name[Taste of Cambridge],food[Italian],name[Zizzi],near[Raja Indian Cuisine],priceRange[more than £30],name[The Punter],food[English],near[Clare Hall],near[The Portland Arms],name[The Cambridge Blue],near[The Sorrento],near[Café Brazil],familyFriendly[yes],name[Fitzbillies]

Download

How to use

document = DocumentAssembler()\
    .setInputCol("text")\
    .setOutputCol("document")

use = UniversalSentenceEncoder.pretrained() \
 .setInputCols(["document"])\
 .setOutputCol("use_embeddings")

docClassifier = MultiClassifierDLModel.pretrained("multiclassifierdl_use_e2e") \
  .setInputCols(["use_embeddings"])\
  .setOutputCol("category")\
  .setThreshold(0.5)

pipeline = Pipeline(
    stages = [
        document,
        use,
        docClassifier
    ])
val documentAssembler = new DocumentAssembler()
   .setInputCol("text")
   .setOutputCol("document")
   .setCleanupMode("shrink")

val use = UniversalSentenceEncoder.pretrained()
  .setInputCols("document")
  .setOutputCol("use_embeddings")

val docClassifier = MultiClassifierDLModel.pretrained("multiclassifierdl_use_e2e")
.setInputCols("use_embeddings")
.setOutputCol("category")
.setThreshold(0.5f)

val pipeline = new Pipeline()
  .setStages(
    Array(
      documentAssembler,
      use,
      docClassifier
    )
  )

Model Information

Model Name: multiclassifierdl_use_e2e
Compatibility: Spark NLP 2.7.1+
License: Open Source
Edition: Official
Input Labels: [use_embeddings]
Output Labels: [category]
Language: en

Data Source

http://www.macs.hw.ac.uk/InteractionLab/E2E/

Benchmarking

Summary Statistics
Accuracy = 0.6366936009433872
F1 measure = 0.7561380632067716
Precision = 0.8678456763698633
Recall = 0.6911700403620353
Micro F1 measure = 0.7750978356361313
Micro precision = 0.8694288913773797
Micro recall = 0.6992326812925538